Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(32)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38670125

RESUMEN

Recent studies have reported that lead-halide perovskites are the most efficient energy-harvesting materials. Regardless of their high-output energy and structural stability, lead-based products have risk factors due to their toxicity. Therefore, lead-free perovskites that offer green energy are the expected alternatives. We have taken CsGeX3(X = Cl, Br, and I) as lead-free halide perovskites despite knowing the low power conversion rate. Herein, we have tried to study the mechanisms of enhancement of energy-harvesting capabilities involving an interplay between structure and electronic properties. A density functional theory simulation of these materials shows a decrease in the band gaps, lattice parameters, and volumes with increasing applied pressure. We report the high piezoelectric responses and high electro-mechanical conversion rates, which are intriguing for generating electricity through mechanical stress.

2.
ACS Omega ; 7(44): 40176-40183, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385877

RESUMEN

Adsorption of carbon monoxide (CO) and hydrogen fluoride (HF) gas molecules on a ZnS monolayer with weak van der Waals interactions is studied using the DFT + U method. From our calculation, the ZnS monolayer shows chemisorption with CO (E ads = -0.96 eV) and HF (E ads = -0.86 eV) gas molecules. Bader charge analysis shows that charge transfer is independent of the binding environment. A higher energy barrier for CO when migrating from one optimal site to another suggests that clustering may be avoided by the introduction of multiple CO molecules upon ZnS, while the diffusion energy barrier (DEB) for HF suggests that binding may occur more easily for HF gas upon the ZnS ML. Adsorption of the considered diatomic molecule also results in a significant variation in effective mass and therefore can be used to enhance the carrier mobility of the ZnS ML. Additionally, the calculation of recovery time shows that desirable sensing and desorption performance for CO and HF gas molecules can be achieved at room temperature (300 K).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA