Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(40): 27264-27275, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37791455

RESUMEN

Designing an inexpensive and highly efficient recovery process for xenon (Xe) is gaining importance in the development of sustainable applications. Using metal organic frameworks (MOFs) for separating Xe from anesthetic gas mixtures has been a recent topic studied rarely and superficially in the literature. We theoretically investigated Xe recovery performances of 43 biological MOFs (Bio-MOFs) formed by biocompatible metal cations and biological endogenous linkers. Xe uptakes and Xe permeabilities in its binary mixtures with CO2, O2, and N2 were investigated by applying Grand Canonical Monte Carlo and Molecular Dynamics simulations. Materials with metalloporphyrin, hexacarboxylate, triazine, or pyrazole ligands, dimetallic paddlewheel units, relatively large pore sizes (PLD > 5 Å and LCD > 10 Å), large void fractions (≈0.8), and large surface areas (>2900 m2 g-1) have been determined as top performing Bio-MOFs for Xe recovery. By applying Density Functional Theory simulations and generating electron density difference maps, we determined that Xe-host interactions in the top performing Bio-MOFs are maximized mainly due to noncovalent interactions of Xe, such as charge-induced dipole and aerogen-π interactions. Polarized Xe atoms in the vicinity of cations/anions as well as π systems are fingerprints of enhanced guest-host interactions. Our results show examples of rarely studied aerogen interactions that play a critical role in selective adsorption of Xe in nanoporous materials.

2.
Chemphyschem ; 21(24): 2692-2700, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32955784

RESUMEN

Understanding water reduction towards H2 generation is crucial to overcome today's renewable energy obstacles. Previous studies have shown the superior H2 production performances of Cobalt based penta-pyridyl (CoaPPy) and tetra-pyridyl (CoaTPy) complexes in solution. We investigate H2 production cycles of CoaPPy and CoaTPy complexes immersed in water solution by means of Ab-initio Molecular Dynamics and Density Functional Theory. We monitor dynamic properties of the systems, solvent response and structural changes occurring in the catalysts, by simulating all intermediate steps of the H2 production cycle. Reduction free energies and reorganization energies are calculated. Our results show that, following the first electron injection, H2 production proceeds with the singlet spin state. Following the first electron insertion, we observe a significant rearrangement of the hydrogen bonding network in the first solvation shell. The cobalt center turns out to be more accessible for the surrounding water molecules in the case of CoaTPy at all the intermediate steps, which explains its higher catalytic performance over CoaPPy. Following the first reduction reaction, a larger gain in reduction free energy is estimated for CoaTPy with respect to CoaPPy, with a difference of 0.14 eV, in line with the experiments. For the second reduction, instead, CoaPPy shows more negative reduction potential, by 0.41 eV.

3.
Nat Commun ; 10(1): 5255, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748503

RESUMEN

Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co [Formula: see text] character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems.

4.
Chimia (Aarau) ; 73(11): 906-912, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753071

RESUMEN

Proton reduction by [CoII(BPyPy2COH)(OH2)2]2+ (BPyPy2COH = [2,2'-bipyridin]-6-yl-di[pyridin-2-yl]methanol) proceeds through two distinct, pH-dependent pathways involving proton-coupled electron transfer (PCET), reduction and protonation steps. In this account we give an overview of the key mechanistic aspects in aqueous solution from pH 3 to 10, based on electrochemical data, time-resolved spectroscopy and ab initio molecular dynamics simulations of the key catalytic intermediates. In the acidic pH branch, a PCET to give a CoIII hydride is followed by a reduction and a protonation step, to close the catalytic cycle. At elevated pH, a reduction to CoI is observed, followed by a PCET to a CoII hydride, and the catalytic cycle is closed by a slow protonation step. In our simulation, both CoI and CoII-H feature a strong interaction with the surrounding solvent via hydrogen bonding, which is expected to foster the following catalytic step.

5.
Nanoscale ; 9(25): 8756-8763, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28616947

RESUMEN

Metal complexes of the tetradentate bipyridine based macrocycle pyrphyrin (Pyr) have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on stoichiometric TiO2(110) is investigated in ultrahigh vacuum by means of scanning tunneling microscopy, photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. In a joint experimental and computational effort, the local adsorption geometry at low coverage, the long-range molecular ordering at higher coverage and the electronic structure have been determined for both the bare ligand and the cobalt-metalated Pyr molecule on TiO2. The energy level alignment of CoPyr/TiO2 supports electron injection into TiO2 upon photoexcitation of the CoPyr complex and thus renders it a potential sensitizer dye. Importantly, Co-incorporation is found to stabilize the Pyr molecule against photo-induced degradation, while the bare ligand is decomposed rapidly under continuous UV-irradiation. This interesting phenomenon is discussed in terms of additional de-excitation channels for electronically highly excited molecular states.

6.
Nanoscale ; 8(15): 7958-68, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27006307

RESUMEN

The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.

7.
Phys Chem Chem Phys ; 17(35): 22846-54, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26264077

RESUMEN

Solar-light driven water splitting is a promising way for the sustainable production of molecular hydrogen, the latter representing an efficient carrier for energy storage and conversion into common liquid fuels. In search of novel catalysts for high-performance water splitting devices, Co-pyrphyrin (CoPy) has been recently synthesized and successfully used as a homogeneous water reduction catalyst. We investigate the adsorption of this molecule on the rutile TiO2(110) surface as a possible first step towards the design of a heterogeneous water reduction system. We find that the adsorption of the molecule is stabilized by the interaction of the cyano groups with the under-coordinated Ti centers present at the surface. This interaction induces the rehybridization of the molecular orbitals localized on the cyano groups and the realignment of the lowest unoccupied molecular states. Moreover, the highest occupied molecular orbital of CoPy@rutile(110) is localized on CoPy and the energy gap turns out to be significantly smaller than the gap of pristine rutile(110). This implies that direct or indirect injection of electrons from CoPy to the rutile(110) surface is in principle possible upon the absorption of light in the visible range. On the other hand, the electronic properties of the Co(ii) center are not modified by the adsorption, which suggests that CoPy and its derivatives may be used in water electrolysis for hydrogen production also in the adsorbed state.


Asunto(s)
Cobalto/química , Metaloporfirinas/química , Titanio/química , Adsorción , Teoría Cuántica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA