Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(68): e202302665, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37704573

RESUMEN

Using the popular metal-ligand axial coordination self-assembly approach, donor-acceptor conjugates have been constructed using zinc tetrapyrroles (porphyrin (ZnP), phthalocyanine (ZnPc), and naphthalocyanine (ZnNc)) as electron donors and imidazole functionalized tetracyanobutadiene (Im-TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded-tetracyanobutadiene (Im-DCNQ) as electron acceptors. The newly formed donor-acceptor conjugates were fully characterized by a suite of physicochemical methods, including absorption and emission, electrochemistry, and computational methods. The measured binding constants for the 1 : 1 complexes were in the order of 104 -105  M-1 in o-dichlorobenzene. Free-energy calculations and the energy level diagrams revealed the high exergonicity for the excited state electron transfer reactions. However, in the case of the ZnNc:Im-DCNQ complex, owing to the facile oxidation of ZnNc and facile reduction of Im-DCNQ, slow electron transfer was witnessed in the dark without the aid of light. Systematic transient pump-probe studies were performed to secure evidence of excited state charge separation and gather their kinetic parameters. The rate of charge separation was as high as 1011  s-1 suggesting efficient processes. These findings show that the present self-assembly approach could be utilized to build donor-acceptor constructs with powerful electron acceptors, TCBD and DCNQ, to witness ground and excited state charge transfer, fundamental events required in energy harvesting, and building optoelectronic devices.

2.
J Phys Chem A ; 127(38): 7964-7975, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37707534

RESUMEN

Singlet oxygen (1O2) producing photosensitizers are highly sought for developing new photodynamic therapy agents and facilitating 1O2-involved chemical reactions. Often singlet oxygen is produced by the reaction of triplet-excited photosensitizers with dioxygen via an energy transfer mechanism. In the present study, we demonstrate a charge transfer mechanism to produce singlet oxygen involving push or pull functionalized porphyrins. For this, 20 ß-pyrrole functionalized porphyrins carrying either an electron-rich push or electron-deficient pull group have been newly synthesized. Photoexcitation of these push-pull porphyrins has been shown to produce high-energy MPδ+-Aδ- or MPδ--Dδ+ charge transfer states. Subsequent charge recombination results in populating the triplet excited states of extended lifetimes in the case of the push group containing porphyrins that eventually react with dioxygen to produce the reactive singlet oxygen of relatively higher quantum yields. The effect of the push and pull groups on the porphyrin periphery in governing initial charge transfer, the population of triplet excited states and their lifetimes, and resulting in improved singlet oxygen quantum yields are systematically probed. The improved performance of 1O2 generation by porphyrins carrying push groups is borne out from this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA