Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 105(3): 649-667, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33128314

RESUMEN

Low soil phosphorus (P) availability is a major limitation for crop production. The molecular mechanisms underlying plant responses and adaptation to phosphate (Pi) deficiency are unclear. OsbHLH6 (hereafter bHLH6), an uncharacterized rice (Oryza sativa) Pi starvation response gene encoding a basic helix-loop-helix protein, was identified by yeast two-hybrid screening using the phosphate response repressor OsSPX4 (hereafter SPX4) as bait. bHLH6 is expressed in shoots and roots, and its expression is significantly induced in shoots by Pi deficiency. bHLH6 overexpression lines showed Pi accumulation and enhanced Pi starvation responses, including upregulation of Pi starvation-induced genes and longer root hairs. A bhlh6 mutant showed no significant phenotype variation at the seedling stage. A pull-down assay indicated that bHLH6 had higher binding affinity with SPX4 compared to OsPHR2; therefore, bHLH6 competitively inhibited the interaction of SPX4 and OsPHR2. SPX4 overexpression rescued the Pi accumulation caused by bHLH6 overexpression under high- and low-P conditions. Moreover, overexpression of bHLH6 in an spx4 background did not affect the Pi content of spx4 under high- and low-P conditions. The bhlh6 spx4 double mutant showed lower shoot Pi concentrations and transcript levels of OsPT3 and OsPT10 compared with the spx4 mutant under high-P conditions. RNA sequencing results indicated that bHLH6 overexpression and spx4 mutant lines share many differentially expressed Pi-responsive genes. Therefore, bHLH6 is an important regulator for Pi signaling and homeostasis which antagonizes SPX4. This knowledge helps elucidate the molecular regulation of plant adaptation to Pi deficiency and will promote efforts toward the creation of low Pi-tolerant crops.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Oryza/fisiología , Fosfatos/metabolismo , Proteínas de Plantas/genética , Adaptación Fisiológica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Técnicas del Sistema de Dos Híbridos
2.
Plant Physiol ; 183(1): 250-262, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32161109

RESUMEN

Plants have evolved complex physiological and biochemical mechanisms to adapt to a heterogeneous soil phosphorus environment. PHOSPHATE2 (PHO2) is a phosphate (Pi) starvation-signaling regulator involved in maintaining Pi homeostasis in plants. Arabidopsis (Arabidopsis thaliana) PHO2 targets PHOSPHATE TRANSPORTER1 (PHT1) and PHO1 for degradation, whereas rice (Oryza sativa) PHO2 is thought to mediate PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 degradation. However, it is unclear whether and how PHO2 is post-translationally regulated. Here, we show that in rice, the CASEIN KINASE2 (OsCK2) catalytic subunit OsCK2α3 interacts with OsPHO2 in vitro and in vivo in vascular tissues cells, and phosphorylates OsPHO2 at Ser-841. Phosphorylated OsPHO2 is degraded more rapidly than native OsPHO2 in cell-free degradation assays. OsPHO2 interacts with OsPHO1 and targets it for degradation through a multivesicular body-mediated pathway. PHO1 mutation partially rescued the pho2 mutant phenotype. Further genetic analysis showed that a nonphosphorylatable version of OsPHO2 rescued the Ospho2 phenotype of high Pi accumulation in leaves better than native OsPHO2. In addition to the previously established role of OsCK2 in negatively regulating endoplasmic reticulum exit of PHT1 phosphate transporters, this work uncovers a role for OsCK2α3 in modulating Pi homeostasis through regulating the phosphorylation status and abundance of OsPHO2 in rice.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Oryza/enzimología , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Quinasa de la Caseína II/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Fosforilación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo
3.
Plant J ; 100(2): 328-342, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257621

RESUMEN

Crown root (CR) is the main component of the fibrous root system in cereal crops, but the molecular mechanism underlying CR development is still unclear. Here, we isolated the crown root defect 1 (crd1) mutant from ethyl methane sulfonate-mutated mutant library, which significantly inhibited CR development. The CRD1 was identified through genome resequencing and complementation analysis, which encodes an Xpo1 domain protein: the rice ortholog of Arabidopsis HASTY (HST) and human exportin-5 (XPO5). CRD1 is ubiquitously expressed, with the highest expression levels in the CR primordium at the stem base. CRD1 is a nucleocytoplasmic protein. The crd1 mutant contains significantly reduced miRNA levels in the cytoplasm and nucleus, suggesting that CRD1 is essential for maintaining normal miRNA levels in plant cells. The altered CR phenotype of crd1 was simulated by target mimicry of miR156, suggesting that this defect is due to the disruption of miR156 regulatory pathways. Our analysis of CRD1, the HST ortholog identified in monocots, expands our understanding of the molecular mechanisms underlying miRNA level and CR development.


Asunto(s)
MicroARNs/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Carioferinas/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA