Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(11): 10108-10131, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870261

RESUMEN

In all mammals, the basement membrane serves as a pivotal extracellular matrix. Hepatocellular carcinoma (HCC) is a challenge among numerous cancer types shaped by basement membrane-related genes (BMGs). Our research established an innovative prognostic model that is highly accurate in its prediction of HCC prognoses and immunotherapy efficacy to summarize the crucial role of BMGs in HCC. We obtained HCC transcriptome analysis data and corresponding clinical data from The Cancer Genome Atlas (TCGA). To augment our dataset, we incorporated 222 differentially expressed BMGs identified from relevant literature. A weighted gene coexpression network analysis (WGCNA) of 10158 genes demonstrated four modules that were connected to HCC. Additionally, 66 genes that are found at the intersection of BMGs and HCC-related genes were designated as hub HCC-related BMGs. MMP1, ITGA2, P3H1, and CTSA comprise the novel model that was engineered using univariate and multivariate Cox regression analysis. Furthermore, the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) datasets encouraged the BMs model's validity. The overall survival (OS) of individuals with HCC may be precisely predicted in the TCGA and ICGC databases utilizing the BMs model. A nomogram based on the model was created in the TCGA database at similar time, and displayed a favorable discriminating ability for HCC. Particularly, when compared to the patients at an elevated risk, the patients with a low-risk profile presented different tumor microenvironment (TME) and hallmark pathways. Moreover, we discovered that a lower risk score of HCC patients would display a greater response to immunotherapy. Finally, quantitative real-time PCR (qRT-PCR) experiments were used to verify the expression patterns of BMs model. In summary, BMs model demonstrated efficacy in prognosticating the survival probability of HCC patients and their immunotherapeutic responsiveness.


Asunto(s)
Membrana Basal , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Membrana Basal/patología , Membrana Basal/metabolismo , Pronóstico , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Masculino , Femenino , Nomogramas , Redes Reguladoras de Genes , Bases de Datos Genéticas , Transcriptoma
2.
Front Genet ; 13: 969536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092910

RESUMEN

Background: The activation of X-box binding protein 1 (XBP1) plays an essential role in the unfolded protein response (UPR) of the endoplasmic reticulum (ER). XBP1 is commonly expressed in various tumors and is closely related to tumorigenesis and progression. However, the role of XBP1 in lung adenocarcinoma (LUAD), especially the prognostic value of its alternative splicing isoforms, remains largely unknown. Methods: The LUAD datasets were retrieved from the The Cancer Genome Atlas, ArrayExpress and Gene Expression Omnibus. GEPIA2 and meta-analysis were employed to explore the prognostic value, and bioinformatics analysis with the TIMER2.0 database was used to investigate immune cell infiltration. We performed single-cell analyses to identify cell types with high XBP1 expression. In addition, polymerase chain reaction (PCR) and DNA sequencing were performed to verify the authenticity of the new spliceosome. Results: In this study, we found that high expression of XBP1 was significantly associated with a good prognosis, and XBP1 expression was significantly positively correlated with B cell infiltration in LUAD. In addition, we found that high-level expression of a novel splicing isoform, XBP1 (XBP1-003), improved the prognosis of LUAD. Protein structural analysis demonstrated that XBP1-003 has several specific protein domains that are different from those of other XBP1 isoforms, indicating a unique function of this isoform in LUAD. Conclusion: All these results suggest that XBP1 plays an antitumorigenic role in LUAD through alternative splicing, which may be related to the adaptation of plasma cells. This sheds new light on the potential strategy for LUAD prognosis evaluation and immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA