Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 636: 492-500, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36652824

RESUMEN

Exploring highly efficient electromagnetic interference (EMI) shielding filler is urgently desired for next-generation wireless communication and integrated electronics. In this regard, a series of heterogeneous MoO2/N-doped carbon (MoO2/NC) nanorods with tunable conductivity have been successfully synthesized by regulating the pyrolysis temperature within 600, 700 and 800 °C. Profiting from the rational design of heterointerface and low-dimensional structure, the MoO2/NC powder achieves stronger EMI shielding capacity with the incremental temperature. It is found that the MoO2/NC-800 nanorods exhibit the optimal average EMI shielding effectiveness (SE) of 57.2 dB at a thickness of ∼0.3 mm in the X band. Meanwhile, the corresponding shielding mechanisms of MoO2/NC nanorods are also elaborately explained. More interestingly, the increase of sintering temperature makes an obvious effect on absorption loss but has little influence on reflection loss, demonstrating that adjusting the pyrolysis temperature is an effective strategy to strengthen the electromagnetic energy dissipation.

2.
Chempluschem ; 81(12): 1305-1311, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31964070

RESUMEN

Reduced graphene oxide (rGO)@MoS2 composites with a loose structure were prepared and added to poly(vinylidene fluoride) (PVDF) to form composites that showed superior microwave absorption and excellent electromagnetic interference shielding performances. The maximum reflection loss of the rGO@MoS2 /PVDF composites, with a low filling rate (only 5.0 wt %), can reach -43.1 dB at 14.48 GHz, and the frequency bandwidth below -10 dB is 3.6-17.8 GHz (in the frequency range of 2-18 GHz) with a thickness of 1-5 mm. Furthermore, rGO@MoS2 /PVDF composites with a higher filling rate (25 wt %) also exhibit outstanding electromagnetic interference shielding effectiveness, reaching a maximum at 27.9 dB. The mechanism of enhanced absorption and electromagnetic interference shielding performances were also studied in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA