Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 115(6): 929-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23743397

RESUMEN

Through an unknown mechanism, the cyclooxygenase inhibitor and antipyretic acetaminophen (APAP) alters tendon mechanical properties in humans when consumed during exercise. Interleukin-6 (IL-6) is produced by tendon during exercise and is a potent stimulator of collagen synthesis. In nontendon tissue, IL-6 is upregulated in the presence of cyclooxygenase inhibitors and may contribute to alterations in extracellular matrix turnover, possibly due to inhibition of prostaglandin E2 (PGE2). We evaluated the effects of APAP on IL-6 and PGE2 in human Achilles peritendinous tissue after 1 h of treadmill exercise. Subjects were randomly assigned to a placebo (n = 8, 26 ± 1 yr) or APAP (n = 8, 25 ± 1 yr) group. Each subject completed a nonexercise and exercise experiment consisting of 6 h of microdialysis. Drug (APAP, 1,000 mg) or placebo was administered in a double-blind manner during both experiments. PGE2 and IL-6 were determined via enzyme immunoassay and APAP via high-performance liquid chromatography. In subjects given APAP, peritendinous APAP levels increased to 4.08 ± 0.65 µg/ml (P < 0.05). PGE2 did not increase with exercise in either group (P > 0.05), nor was PGE2 significantly reduced in the APAP group. IL-6 levels increased with exercise in both groups (P < 0.05), but this increase was greater in the APAP group (P < 0.05). Our findings suggest that APAP enhances tendon IL-6 production after exercise. Peak levels of APAP obtained in the peritendinous space were twofold lower than values reported in plasma or skeletal muscle. These findings provide insight into the effects of APAP on tendon and provide novel information on the kinetics of APAP in tendon tissue after oral APAP consumption.


Asunto(s)
Acetaminofén/administración & dosificación , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/fisiología , Interleucina-6/biosíntesis , Acetaminofén/farmacocinética , Administración Oral , Adulto , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/farmacocinética , Dinoprostona/metabolismo , Método Doble Ciego , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Microdiálisis , Adulto Joven
2.
Am J Physiol Regul Integr Comp Physiol ; 302(8): R990-5, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22357807

RESUMEN

Chronic consumption of acetaminophen (APAP) during exercise training leads to a reduction in tendon stiffness and modulus compared with a placebo. We explored whether this effect could be due to a reduction in tendon collagen content or cross-linking. Ten-week-old male Wistar rats (n = 50) were divided into placebo or APAP groups and into sedentary or treadmill-exercised groups. APAP (200 mg/kg) or saline was administered once daily by oral gavage. Rats in the exercise groups ran on a treadmill 5 days per week for 8 wk with progression to 60 min per day, 20 m/min, and 8° incline. After 8 wk, lyophilized Achilles tendon samples were assayed for the collagen-specific amino acid hydroxyproline and cross-linking [hydroxylyslpyridinoline (HP)] content by high-performance liquid chromatrography. Collagen content was not influenced by exercise or APAP (P > 0.05). Compared with placebo, tendon water content was 7% (P = 0.006, main effect) lower in animals consuming APAP (placebo: 54.79 ± 0.8%, APAP: 50.89 ± 1.2%). HP in the Achilles tendon was 36% greater (sedentary: 141 ± 15, exercise: 204 ± 26 mmol/mol collagen) in the exercise-trained rats independent of drug treatment (P = 0.020, main effect). Independent of exercise, HP content was 33% lower (P = 0.032, main effect) in the animals consuming APAP (placebo: 195 ± 21, APAP: 140 ± 19 mmol/mol collagen). Our data suggests that chronic consumption of APAP results in a reduction in collagen cross-linking and a loss of tissue water independent of chronic exercise. This reduction in cross-linking and water content could contribute to the decrease in tendon stiffness noted in humans chronically consuming APAP.


Asunto(s)
Acetaminofén/farmacología , Tendón Calcáneo/efectos de los fármacos , Tendón Calcáneo/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Fenómenos Biomecánicos , Colágeno/fisiología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA