RESUMEN
An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.
Asunto(s)
Colorantes Fluorescentes , Tiadiazoles , Cinética , Espectrometría de FluorescenciaRESUMEN
A water-soluble and charge-tagged palladium complex (PdMAI) was found to function inside breast cancer live cells of the MCF-7 lineage as an efficient catalyst for cross-coupling reaction. PdMAI, bearing two ionophilic task-specific ionic liquids as ligands, efficiently catalyzed both in cellulo Suzuki and Buchwald-Hartwig amination reactions. For the first time, therefore, the Buchwald-Hartwig amination is described to occur inside the highly complex cellular environment. The 2,1,3-benzothiadiazole (BTD) core was used as the base for the syntheses, and two π-extended fluorescent derivatives (BTD-2APy) and (BTD-1AN), which were found to emit in the green and red channels, had impressive mitochondrial affinity. These chromophores allowed for selective mitochondrial imaging and tracking.
Asunto(s)
Complejos de Coordinación/química , Líquidos Iónicos/química , Mitocondrias/metabolismo , Paladio/química , Tiadiazoles/química , Catálisis , Complejos de Coordinación/síntesis química , Humanos , Ligandos , Células MCF-7 , SolubilidadRESUMEN
Nanocarriers have the potential to improve the therapeutic index of currently available drugs by improving their efficacy and achieving therapeutic steady-state levels over an extended period. The association of maghemite-rhodium citrate (MRC) nanoparticles (NPs) has the potential to increase specificity of the cytotoxic action. However, the interaction of these NPs with cells, their uptake mechanism, and subcellular localization need to be elucidated. This work evaluates the uptake mechanism of MRC NPs in metastatic and nonmetastatic breast cancer-cell models, comparing them to a nontumor cell line. MRC NPs uptake in breast cancer cells was more effective than in normal cells, with regard to both the amount of internalized material and the achievement of more strategic intracellular distribution. Moreover, this process occurred through a clathrin-dependent endocytosis pathway with different basal expression levels of this protein in the cell lines tested.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Citratos/farmacocinética , Compuestos Férricos/farmacocinética , Nanopartículas , Rodio/farmacocinética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ácido Cítrico/química , Endocitosis/efectos de los fármacos , Femenino , Humanos , Microscopía Electrónica de Transmisión , Nanopartículas/química , Rodio/química , Espectrometría RamanRESUMEN
Deubiquitinating enzymes (DUBs) play an important role in regulating a variety of eukaryotic processes. In this context, exploring the role of deubiquitination in Leishmania infantum could be a promising alternative to search new therapeutic targets for leishmaniasis. Here we present the first characterization of a DUB from L. infantum, otubain (OtuLi), and its localization within parasite. The recombinant OtuLi (rOtuLi) showed improved activity on lysine 48 (K48)-linked over K63-linked tetra-ubiquitin (Ub) and site-directed mutations on amino acids close to the catalytic site (F82) or involved in Ub interaction (L265 and F182) caused structural changes as shown by molecular dynamics, resulting in a reduction or loss of enzyme activity, respectively. Furthermore, rOtuLi stimulates lipid droplet biogenesis (an inflammatory marker) and induces IL-6 and TNF-α secretion in peritoneal macrophages, both proinflammatory cytokines. Our findings suggest that OtuLi is a cytoplasmic enzyme with K48-linked substrate specificity that could play a part in proinflammatory response in stimulated murine macrophages.
RESUMEN
BACKGROUND: Breast cancer is a complex heterogeneous disease and is one of the leading causes of death among women. In addressing the need for treatments of this life-threatening illness, we studied 3,4-dihydropyrimidin-2(1H)-one (or thione) derivatives (DHPMs), a class of inhibitor molecules of the Eg5 motor spindle protein that shows pronounced antitumor activity against several cancer cell lines. METHODS: An in vitro screening was performed for identification of DHPMs with potent antitumor effects on MCF-7 and MDA-MB-231 cells and the selected DHPMs were evaluated for their inhibitory activity on Eg5 both in silico, using Molecular dynamics, and in vitro Eg5 inhibition assays. Analysis of cell death induction, proliferation, cell cycle and cancer stem cells (CSC) profile were performed by flow cytometry to assess the influence of the selected DPHMs on these important tumor features. Finally, the effects of DHPM treatment on tube formation were evaluated in vitro using HUVEC cells, and in vivo using a model on chorioallantoic membrane (CAM) of fertilized eggs. RESULTS: We identified five DHPMs with pronounced inhibitory activity on Eg5 motor protein interfering with the proper mitotic spindle assembly during cell division. These compounds impair the correct conclusion of cell cycle of the breast cancer cells and showed to be selective for tumor cells. Moreover, DHPMs modulate the CD44(+)/CD24(-) phenotype leading to a decrease in the CSC population in MDA-MB-231 cells, an important effect since CSC are resistant to many conventional cancer therapies and play a pivotal role in tumor initiation and maintenance. This observation was confirmed by the results which demonstrated that DHPM treated cells had impaired proliferation and were unable to sustain angiogenesis events. Finally, the DHMP treated cells were induced to apoptosis, which is one of the most pursued goals in drug development. CONCLUSIONS: The results of our study strongly suggest that DHPMs inhibit important tumorigenic features of breast cancer cells leading them to death by apoptosis. These findings firmly point to DHPM molecular architecture as a promising alternative against breast cancer.
Asunto(s)
Cinesinas/antagonistas & inhibidores , Pirimidinas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Cinesinas/química , Modelos Moleculares , Conformación Molecular , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica , Pirimidinas/síntesis química , Pirimidinas/química , Factores de TiempoRESUMEN
The present work describes the synthesis, characterization, and application of a new ion-tagged iron catalyst. The catalyst was employed in the Biginelli reaction with impressive performance. High yields have been achieved when the reaction was carried out in imidazolium-based ionic liquids (BMIâ PF6, BMIâ NTf2, and BMIâ BF4), thus showing that the ionic-liquid effects play a role in the reaction. Moreover, the ion-tagged catalyst could be recovered and reused up to eight times without any noticeable loss in activity. Mechanistic studies performed by using high-resolution electrospray-ionization quadrupole-time-of-flight mass (HR-EI-QTOF) spectrometry and kinetic experiments indicate only one reaction pathway and rule out the other two possibilities under the development conditions. The theoretical calculations are in accordance with the proposed mechanism of action of the iron catalyst. Finally, the 37 dihydropyrimidinone derivatives, products of the Biginelli reaction, had their cytotoxicity evaluated in assays against MCF-7 cancer cell linages with encouraging results of some derivatives, which were virtually non-toxic against healthy cell linages (fibroblasts).