Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 896: 164987, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37394078

RESUMEN

Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA