Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 17(9): 5885-5895, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34379429

RESUMEN

We present a novel technique for computing the free energy differences between two chromophore "isomers" hosted in a molecular environment (a generalized solvent). Such an environment may range from a relatively rigid protein cavity to a flexible solvent environment. The technique is characterized by the application of the previously reported "average electrostatic solvent configuration" method, and it is based on the idea of using the free energy perturbation theory along with a chromophore annihilation procedure in thermodynamic cycle calculations. The method is benchmarked by computing the ground-state room-temperature relative stabilities between (i) the cis and trans isomers of prototypal animal and microbial rhodopsins and (ii) the analogue isomers of a rhodopsin-like light-driven molecular switch in methanol. Furthermore, we show that the same technology can be used to estimate the activation free energy for the thermal isomerization of systems i-ii by replacing one isomer with a transition state. The results show that the computed relative stability and isomerization barrier magnitudes for the selected systems are in line with the available experimental observation in spite of their widely diverse complexity.

2.
J Chem Phys ; 144(12): 124513, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-27036467

RESUMEN

The properties of halides from the lightest, fluoride (F(-)), to the heaviest, astatide (At(-)), have been studied in water using a polarizable force-field approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force-field explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force-field parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-order perturbation theory level of theory. The anion static polarizabilities of the two heaviest halides, I(-) and At(-), were computed in the gas phase using large and diffuse atomic basis sets, and taking into account both electron correlation and spin-orbit coupling within a four-component framework. Our MD simulation results show the solvation properties of I(-) and At(-) in aqueous phase to be very close. For instance, their first hydration shells are structured and encompass 9.2 and 9.1 water molecules at about 3.70 ± 0.05 Å, respectively. These values have to be compared to the F(-), Cl(-), and Br(-) ones, i.e., 6.3, 8.4, and 9.0 water molecules at 2.74, 3.38, and 3.55 Å, respectively. Moreover our computations predict the solvation free energy of At(-) in liquid water at ambient conditions to be 68 kcal mol(-1), a value also close the I(-) one, about 70 kcal mol(-1). In all, our simulation results for I(-) are in excellent agreement with the latest neutron- and X-ray diffraction studies. Those for the At(-) ion are predictive, as no theoretical or experimental data are available to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA