Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111767

RESUMEN

LASSBio-1920 was synthesized due to the poor solubility of its natural precursor, combretastatin A4 (CA4). The cytotoxic potential of the compound against human colorectal cancer cells (HCT-116) and non-small cell lung cancer cells (PC-9) was evaluated, yielding IC50 values of 0.06 and 0.07 µM, respectively. Its mechanism of action was analyzed by microscopy and flow cytometry, where LASSBio-1920 was found to induce apoptosis. Molecular docking simulations and the enzymatic inhibition study with wild-type (wt) EGFR indicated enzyme-substrate interactions similar to other tyrosine kinase inhibitors. We suggest that LASSBio-1920 is metabolized by O-demethylation and NADPH generation. LASSBio-1920 demonstrated excellent absorption in the gastrointestinal tract and high central nervous system (CNS) permeability. The pharmacokinetic parameters obtained by predictions indicated that the compound presents zero-order kinetics and, in a human module simulation, accumulates in the liver, heart, gut, and spleen. The pharmacokinetic parameters obtained will serve as the basis to initiate in vivo studies regarding LASSBio-1920's antitumor potential.

2.
ACS Omega ; 7(43): 38752-38765, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36340078

RESUMEN

Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood-brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis.

3.
J Inorg Biochem ; 180: 80-88, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29247870

RESUMEN

A series of organotin(IV) derivatives was investigated in vitro for their antibiotic and adjuvant antibiotic properties (efflux pump inhibitors) against Staphylococcus aureus strains that overexpress efflux pump proteins for norfloxacin (SA-1199B), erythromycin (RN-4220) and tetracycline (IS-58). Most organotin(IV) compounds showed significant antibacterial activity with small Minimum Inhibitory Concentration (MIC) values, some of which were close to 1.0µg/mL (3.1µM), but this feature was also associated with substantial cytotoxicity. Nevertheless, the cytotoxicity of these organotin(IV) compounds can be overcome when they are used as antibiotic adjuvants. Their remarkable adjuvant antibiotic properties allow potentiation of the action of tetracycline (against IS-58 strain) by up to 128-fold. This likely indicates that they can act as putative inhibitors of bacterial efflux pumps. These results reinforce organotin(IV) complexes as promising antibacterial agents, and many of these complexes, if associated with antibiotics, can act as potential adjuvant antibiotic candidates.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Compuestos Orgánicos de Estaño/síntesis química , Compuestos Orgánicos de Estaño/farmacología , Animales , Antibacterianos/química , Línea Celular , Ratones , Pruebas de Sensibilidad Microbiana , Compuestos Orgánicos de Estaño/química , Staphylococcus aureus/efectos de los fármacos , Tetraciclinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA