Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2279): 20240037, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39129404

RESUMEN

Recently, non-local configurations have been proposed by adding beyond nearest neighbour couplings among elements in lattices to obtain roton-like dispersion relations and phase and group velocities with opposite signs. Even though the introduction of non-local elastic links in metamaterials has unlocked unprecedented possibilities, literature models and prototypes seem neither to provide criteria to compare local and non-local lattices nor to discuss any related rules governing the transition between the two configurations. A physically reasonable principle that monoatomic one-dimensional chains must obey to pass from single- to multi-connected systems is here proposed through a mass conservation law for elastic springs thereby introducing a suitable real dimensionless parameter [Formula: see text] to tune stiffness distribution. Therefore, the dispersion relations as a function of [Formula: see text] and of the degree of non-locality [Formula: see text] are derived analytically, demonstrating that the proposed principle can be rather interpreted as a general mechanical consistency condition to preserve proper dynamics, involving the spring-to-bead mass ratio. Finally, after discussing qualitative results and deriving some useful inequalities, numerical simulations and two-dimensional FFTs are performed for some paradigmatic examples to highlight key dynamics features exhibited by chains with finite length as the parameters [Formula: see text] and [Formula: see text] vary.This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA