Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 285: 117016, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288732

RESUMEN

Arsenic is a widespread environmental contaminant known to accumulate in the brain, leading to cognitive impairment. However, the exact mechanisms by which arsenic causes cognitive deficits remain unclear. The present study aims to discover whether the destruction of the blood-brain barrier (BBB) mediated by matrix metalloproteinases 2 and matrix metalloproteinases 9 (MMP-2 and MMP-9) and subsequent neuronal apoptosis are involved in arsenic-induced cognitive impairment. Ninety male mice were given 0, 25, and 50 mg/L NaAsO2 in drinking water and 30 mg/kg doxycycline hyclate (DOX, an inhibitor of MMPs) gavage for 12 weeks to observe the alterations in learning and memory of mice, the morphology of hippocampal neurons, as well as the BBB permeability and ultrastructure, the localization and expression of tight junction proteins, MMP-2, and MMP-9. Our findings indicated that arsenic exposure induced learning and memory impairment in mice, accompanied by neuronal loss and apoptosis. Furthermore, arsenic exposure increased hematogenous IgG leakage into the brain, disrupted the tight junctions, reduced the expression of Claudin5, Occludin, and ZO1 in the endothelial cells, and increased the expression of MMP-2 and MMP-9 in the endothelial cells and astrocytes. Finally, DOX intervention preserved BBB integrity, alleviated hippocampal neuronal apoptosis, and improved cognitive impairment in mice caused by arsenic exposure. Our research demonstrates that cognitive disfunction in mice induced by arsenic exposure is associated with MMP-2 and MMP-9-mediated BBB destruction and neuronal apoptosis. The current investigation provides new insights into mechanisms of arsenic neurotoxicity and suggests that MMP-2 and MMP-9 may serve as potential therapeutic targets for treating arsenic-induced cognitive dysfunction in the future.

2.
Toxics ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38251038

RESUMEN

Limited studies have demonstrated that inorganic arsenic exposure is positively associated with serum vitamin D levels, although the correlation between urinary arsenic species and serum vitamin D has not been investigated in areas of water-borne arsenicosis. A cross-sectional study of 762 participants was conducted in Wenshui Country, Shanxi Province, a water-borne arsenicosis area. The results showed a positive relationship between urinary arsenic species (inorganic arsenic (iAs), methylarsonic acid (MMAV), dimethylarsinic acid (DMAV) and serum 25(OH)D. Log-binomial regression analysis indicated a 0.4% increase in the risk of vitamin D excess for every 1-unit increment in the Box-Cox transformed urinary DMAV after adjustment for covariates. After stratifying populations by inorganic arsenic methylation metabolic capacity, serum 25(OH)D levels in the populations with iAs% above the median and primary methylation index (PMI) below the median increased by 0.064 ng/mL (95% CI: 0.032 to 0.096) for every one-unit increase in the Box-Cox transformed total arsenic (tAs) levels. Serum 25(OH)D levels increased by 0.592 ng/mL (95% CI: 0.041 to 1.143) for every one-unit rise in the Box-Cox transformed iAs levels in people with skin hyperkeratosis. Overall, our findings support a positive relationship between urinary arsenic species and serum 25(OH)D. It was recommended that those residing in regions with water-borne arsenicosis should take moderate vitamin D supplements to avoid vitamin D poisoning.

3.
Chem Biol Interact ; 385: 110743, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37802410

RESUMEN

Accumulating evidence suggests that Matrix metalloproteinase-9 (MMP-9) and -2 (MMP-2) are involved in the neuropathological processes by contributing to breaking the extracellular matrix and the tight junctions that constitute the blood-brain barrier (BBB). However, the influences of arsenic (As) on these two MMPs were inconsistent. In the cross-sectional study of 500 adults, serum MMP-2 and MMP-9 positively correlated with urine arsenic. And the positive correlation between urine tAs and serum MMP-9/2 was found in people older than 59 years. In vivo studies, we found that arsenic exposure or senescence might decrease number of neurons and neuritic density and increase serum and cortical MMP-9/2 levels. Furthermore, arsenic exposure or senescence could disrupt the tight junction of BBB and elevate MMP-9 and MMP-2 expression in the cerebral microvascular endothelium. The MMP-9 and MMP-2 are of particular interest when researching the link between arsenic exposure and nerve damage.


Asunto(s)
Arsénico , Barrera Hematoencefálica , Adulto , Humanos , Barrera Hematoencefálica/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Estudios Transversales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA