Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Methods Biomech Biomed Engin ; 26(7): 807-819, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35723938

RESUMEN

The internal pore structure of the porous scaffold for bone tissue engineering and the pressure and velocity distributions of its flow field affect the attachment, proliferation and differentiation of osteoblasts. The permeability of the porous scaffold determines its ability to transport cellular nutrients and metabolites. Therefore, studying the fluid flow characteristics of the porous scaffold plays a vital role in its biological applications. Heterogeneous porous scaffolds (HPS) with irregular internal pore structure have more bionic characteristics of natural structure than uniform porous scaffolds with regular internal pore structure. In order to comprehensively grasp the biological properties of HPS, this article designed HPS with different porosities based on the Voronoi generation method and random theory, and then used computational fluid dynamics (CFD)software to conduct fluid flow simulations. The velocity and pressure distribution rules of the internal flow field of HPS with different porosities were obtained by CFD simulation analysis, and the relationship between the porosity and the distribution rules was studied. Furthermore, the permeabilities of HPS with different porosities were calculated based on Darcy's law, and the influence rule of porosity on the permeability was obtained.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porosidad , Simulación por Computador , Programas Informáticos
2.
Int J Numer Method Biomed Eng ; 39(3): e3673, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36537649

RESUMEN

Bone tissue engineering plays an extremely important role in the clinical treatment of bone defects. Porous scaffold is one of the three essential factors of bone tissue engineering, and its structural design has attracted more and more attention . At present, most of the design methods of porous scaffolds focus on uniform porous scaffolds with periodic and regular pore structures. However, periodic and regular pore structure cannot comprehensively and accurately simulate the microstructures and mechanical properties of natural bone. To address this problem, based on bone slice images and VT (Voronoi-Tessellation) method, this article proposed a design method of HPS (Heterogeneous Porous Scaffolds) with bionic pore structure and controllable porosity. The FDM (fused deposition modeling) printing technology was applied to fabricate HPS with different porosities, and the mechanical properties of the HPS were analyzed by experiments. The research results illustrate that the HPS constructed by the design method proposed in this article have good controllability, and their internal pore structures are highly similar to those of natural bone, which have biomimetic characteristics. The mechanical property analysis illustrate that the stiffness and compressive strength of HPS decrease with the increase of porosity, in addition, the heterogeneous pore distribution makes HPS have the characteristics of non-concentrated and discontinuous damage distribution. This study provides a new idea for the design of porous scaffolds and a theoretical basis for the bionic design of HPS.


Asunto(s)
Huesos , Andamios del Tejido , Andamios del Tejido/química , Porosidad , Ingeniería de Tejidos/métodos
3.
Front Plant Sci ; 13: 953794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247570

RESUMEN

Transgenerational plasticity (TGP) occurs when maternal environments influence the expression of traits in offspring, and in some cases may increase fitness of offspring and have evolutionary significance. However, little is known about the extent of maternal environment influence on gene expression of offspring, and its relationship with trait variations across generations. In this study, we examined TGP in the traits and gene expression of field pennycress (Thlaspi arvense) in response to cadmium (Cd) stress. In the first generation, along with the increase of soil Cd concentration, the total biomass, individual height, and number of seeds significantly decreased, whereas time to flowering, superoxide dismutase (SOD) activity, and content of reduced glutathione significantly increased. Among these traits, only SOD activity showed a significant effect of TGP; the offspring of Cd-treated individuals maintained high SOD activity in the absence of Cd stress. According to the results of RNA sequencing and bioinformatic analysis, 10,028 transcripts were identified as Cd-responsive genes. Among them, only 401 were identified as transcriptional memory genes (TMGs) that maintained the same expression pattern under normal conditions in the second generation as in Cd-treated parents in the first generation. These genes mainly participated in Cd tolerance-related processes such as response to oxidative stress, cell wall biogenesis, and the abscisic acid signaling pathways. The results of weighted correlation network analysis showed that modules correlated with SOD activity recruited more TMGs than modules correlated with other traits. The SOD-coding gene CSD2 was found in one of the modules correlated with SOD activity. Furthermore, several TMGs co-expressed with CSD2 were hub genes that were highly connected to other nodes and critical to the network's topology; therefore, recruitment of TMGs in offspring was potentially related to TGP. These findings indicated that, across generations, transcriptional memory of gene expression played an important role in TGP. Moreover, these results provided new insights into the trait evolution processes mediated by phenotypic plasticity.

4.
BMC Biol ; 19(1): 143, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294107

RESUMEN

BACKGROUND: Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. RESULTS: We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32-18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two high- and two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. CONCLUSIONS: Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species.


Asunto(s)
Thlaspi , Aclimatación , Adaptación Fisiológica/genética , Genómica , Rayos Ultravioleta
5.
Genes Genet Syst ; 95(5): 225-234, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177249

RESUMEN

Thlaspi arvense (field pennycress) is widespread in temperate regions of the northern hemisphere. We estimated the genetic and epigenetic structure of eight T. arvense populations (131 individuals) in China using amplified fragment length polymorphism and methylation-sensitive amplified polymorphism molecular-marker techniques. We detected low diversity at both genetic (mean = 0.03; total = 0.07) and epigenetic (mean = 0.04; total = 0.07) levels, while significant genetic (FST = 0.42, P < 0.001) and epigenetic (FST = 0.32, P < 0.001) divergence was found across the distribution range. Using Mantel testing, we found spatial genetic and epigenetic differentiation, consistent with isolation-by-distance models. We also identified a strong correlation between genetic and epigenetic differentiation (r = 0.7438, P < 0.001), suggesting genetic control of the epigenetic variation. Our results indicate that mating system, natural selection and gene flow events jointly structure spatial patterns of genetic and epigenetic variation. Moreover, epigenetic variation may serve as a basis of natural selection and ecological evolution to enable species to adapt to heterogeneous habitats. Our study provides novel clues for the adaptation of T. arvense.


Asunto(s)
Epigénesis Genética , Polimorfismo Genético , Thlaspi/genética , China , Metilación de ADN , Flujo Génico , Aislamiento Reproductivo
6.
Ecol Evol ; 10(20): 11622-11630, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144988

RESUMEN

Epigenetic diversity could play an important role in adaptive evolution of organisms, especially for plant species occurring in new and stressful environments. Thlaspi arvense (field pennycress), a valuable oilseed crop, is widespread in temperate regions of the northern hemisphere. In this study, we investigated the effect of salinity stress on the epigenetic variation of DNA methylation and epigenetic stress memory in pennycress using methylation-sensitive amplification polymorphism (MSAP) markers. We examined how the status of DNA methylation changes across individuals in response to salinity stress and whether such an effect of maternal stress could be transferred to offspring for one or two generations in nonstressed environments. Our results based on 306 epiloci indicated no consistent change of DNA methylation status in specific epiloci across individuals within the same conditions. In contrast, we found that the epigenetic diversity at population level increased significantly in response to the stimulation of salinity stress; and this "stimulation effect" could be transferred partially in the form of stress memory to at least two generations of offspring in nonstressed environments. In addition, we observed a parallel change in functionally important traits, that is, phenotypic variation was significantly higher in plants grown under salinity stress compared with those of control groups. Taken together, our results provide novel clues for the increased spontaneous epimutation rate in response to stress in plants, of potential adaptive significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA