Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Insect Sci ; 17(3)2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973574

RESUMEN

Bagrada hilaris is a polyphagous herbivore reported as an invasive pest in the United States. During the course of dissecting Burmeister hilaris unique crystals were observed in both the midgut and oviducts. Crystals were identified using X-ray diffraction techniques. Both acicular (i.e., needle-like, slender, and/or tapered) and cubic (i.e., cube shaped) crystals were observed in six of 75 individuals examined (8.0%). The crystals were mainly observed in females (6.7%), followed by males (1.3%) with no crystals observed in the minimal number of nymphs examined (0%). Crystals of both types were detected in the midgut and lateral oviducts of the females and midgut in males. The acicular crystals often appeared as distinct bundles when present in the midgut and oviducts. Crystals varied in size with the acicular crystals ranging from 0.12 mm to 0.5 mm in length although the cubic crystals ranged in length from 0.25 mm to over 1.0 mm with widths of ∼0.25 mm. The cubic crystals were identified as allantoin although the acicular crystals were most likely dl-allantoin in combination with halite. While allantoin in a soluble form is often found in insect tissues and excreta; being present as a crystal, especially in such a large form, is curious and raises some interesting questions. More research is warranted to further understand mechanisms associated with such crystal formation in B. hilaris and can lead to a better understanding of the excretory process in this species and the role allantoin plays in the elimination of excess nitrogen.


Asunto(s)
Alantoína/metabolismo , Heterópteros/metabolismo , Animales , Cristalización , Femenino , Tracto Gastrointestinal/metabolismo , Masculino , Oviductos/metabolismo
2.
J Nematol ; 44(3): 264-73, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23481558

RESUMEN

To facilitate improved in vivo culture of entomopathogenic nematodes, production of both insect hosts and nematodes should be optimized for maximum fitness, quality, and cost efficiency. In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. In this study, we tested components of our improved T. molitor diet (lipids, cholesterol, and a salt [MnSO4]) alone and in combination for effects on host susceptibility and reproductive capacity of Heterorhabditis indica and Steinernema carpocapsae. Our results indicated that moderate levels of lipids (10%) increased host susceptibility to S. carpocapsae but did not affect H. indica, whereas cholesterol and MnSO4 increased host susceptibility to H. indica but not S. carpocapsae. The combined T. molitor diet (improved for increased insect growth) increased host susceptibility to S. carpocapsae and had a neutral effect on H. indica; interactions among single diet ingredients were observed. No effects of insect host diet were detected on the reproductive capacity of either nematode species in T. molitor. Subsequently, progeny infective juveniles, derived from nematodes grown in T. molitor that were fed diets with varying nutritive components were tested for virulence to and reproduction capacity in the target pest Diaprepes abbreviatus. The progeny nematodes produced from differing T. molitor diet treatments did not differ in virulence except H. indica derived from a diet that lacked cholesterol or MnS04 (but contained lipids) did not cause significant D. abbreviatus suppression relative to the water control. We conclude that the improved insect host diet is compatible with production of H. indica and S. carpocapsae, and increases host susceptibility in S. carpocapsae. Furthermore, in a general sense, our results indicate host diets can be optimized for improved in vivo entomopathogenic nematode production efficiency. This is the first report of an insect diet that was optimized for both host and entomopathogenic nematode production. Additionally, our study indicates that host diet may impact broader aspects of entomopathogenic nematode ecology and pest control efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA