Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Regen Biomater ; 11: rbae042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027361

RESUMEN

In-stent restenosis can be caused by the activation, proliferation and migration of vascular smooth muscle cells (VSMCs), which affects long-term efficacy of interventional therapy. Copper (Cu) has been proved to accelerate the endothelialization and reduce thrombosis formation, but little is known about its inhibition effect on the excessive proliferation of VSMCs. In this study, 316L-Cu stainless steel and L605-Cu cobalt-based alloy with varying Cu content were fabricated and their effects on surface property, blood compatibility and VSMCs were studied in vitro and in vivo. CCK-8 assay and EdU assay indicated that the Cu-bearing metals had obvious inhibitory effect on proliferation of VSMCs. Blood clotting and hemolysis tests showed that the Cu-bearing metals had good blood compatibility. The inhibition effect of the Cu-bearing metals on migration of cells was detected by Transwell assay. Further studies showed that Cu-bearing metals significantly decreased the mRNA expressions of bFGF, PDGF-B, HGF, Nrf2, GCLC, GCLM, NQO1 and HO1. The phosphorylation of AKT and Nrf2 protein expressions in VSMCs were significantly decreased by Cu-bearing metals. Furthermore, it was also found that SC79 and TBHQ treatments could recover the protein expressions of phospho-AKT and Nrf2, and their downstream proteins as well. Moreover, 316L-Cu stent proved its inhibitory action on the proliferation of VSMCs in vivo. In sum, the results demonstrated that the Cu-bearing metals possessed apparent inhibitory effect on proliferation and migration of VSMCs via regulating the AKT/Nrf2/ARE pathway, showing the Cu-bearing metals as promising stent materials for long-term efficacy of implantation.

2.
J Biomed Mater Res B Appl Biomater ; 110(8): 1899-1910, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35253986

RESUMEN

Copper ions (Cu) grafted chitosan coating was prepared using the pneumatic spraying method on the silicone rubber surface. Coating's surface properties, morphology, composition, Cu releasing behavior, antibacterial, and anti-inflammatory activities are investigated and discussed. Surface properties, composition, and morphology were investigated by scanning electron microscopy (SEM) and contact angle measurements. The antibacterial activity has been tested with Escherichia coli and Staphylococcus aureus suspensions in vitro. Besides, the morphology of the biofilm was inspected with a field emission SEM. To evaluate the anti-inflammatory activity and biosafety of the coating in vivo, the optimized coating samples and control groups were implanted subcutaneously into the back of mice. The bacterial environment model was established by injection of the bacterial suspension. The morphology and bacterial adhered on the surface of catheters and the surrounding tissues were analyzed after 5 days of implantation. As in vitro results, the number of adhered bacterial on the surface of the silicon rubber surface was decreased, and the anti-inflammatory rate was increased by the intensify of the Cu content in chitosan coating. As for in vivo results, after 5 days of implantation, there was no evident inflammation in the surrounding tissues of all catheters in all without the S. aureus injected group. In the injected chitosan/Cu coated group; the inflammation, the number of the adhered bacteria were observed less than other injected samples without Cu; no inflammation were noticeable. Results indicate that the Cu-modified chitosan coating can confer excellent antibacterial and anti-inflammatory activity as applied on medical catheters.


Asunto(s)
Quitosano , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antiinflamatorios , Catéteres , Quitosano/farmacología , Cobre/farmacología , Escherichia coli , Inflamación , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA