Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203592

RESUMEN

Highly sensitive infrared photodetectors are needed in numerous sensing and imaging applications. In this paper, we report on extended short-wave infrared (e-SWIR) avalanche photodiodes (APDs) capable of operating at room temperature (RT). To extend the detection wavelength, the e-SWIR APD utilizes a higher indium (In) composition, specifically In0.3Ga0.7As0.25Sb0.75/GaSb heterostructures. The detection cut-off wavelength is successfully extended to 2.6 µm at RT, as verified by the Fourier Transform Infrared Spectrometer (FTIR) detection spectrum measurement at RT. The In0.3Ga0.7As0.25Sb0.75/GaSb heterostructures are lattice-matched to GaSb substrates, ensuring high material quality. The noise current at RT is analyzed and found to be the shot noise-limited at RT. The e-SWIR APD achieves a high multiplication gain of M~190 at a low bias of Vbias=- 2.5 V under illumination of a distributed feedback laser (DFB) with an emission wavelength of 2.3 µm. A high photoresponsivity of R>140 A/W is also achieved at the low bias of Vbias=-2.5 V. This type of highly sensitive e-SWIR APD, with a high internal gain capable of RT operation, provides enabling technology for e-SWIR sensing and imaging while significantly reducing size, weight, and power consumption (SWaP).

2.
Micromachines (Basel) ; 10(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583512

RESUMEN

In this paper, we report a mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band photodetector capable of voltage-controllable detection band selection. The voltage-tunable dual-band photodetector is based on the multiple stacks of sub-monolayer (SML) quantum dots (QDs) and self-assembled QDs. By changing the photodetector bias voltages, one can set the detection band to be MWIR, or LWIR or both with high photodetectivity and low crosstalk between the bands.

3.
Sci Rep ; 7(1): 10996, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28887469

RESUMEN

In this paper, we report the analysis of a concentric circular ring plasmonic optical antenna (POA) array using a simple lumped coupled circuit (LCC) model. The currents in the circular rings of the POA array and their mutual couplings are analyzed using the LCC model. The results agree well with the numerical simulation using CST's Microwave Studio®. The LCC model reveals the mutual couplings between the antenna rings. It is found that the mutual couplings are not only between the adjacent antenna rings, but also involve their second (2nd) nearest or farther neighbors. Since the near-fields of the optical antennas are related to the currents in the optical antennas, the LCC model provides a useful tool for the analysis of the near-field and their mutual interactions in the circular ring POA array.

4.
Opt Express ; 22(21): 24970-6, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401530

RESUMEN

In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.


Asunto(s)
Rayos Infrarrojos , Óptica y Fotónica/instrumentación , Puntos Cuánticos/química , Simulación por Computador , Electricidad , Metales/química , Dispositivos Ópticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA