Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(19): 8604-8614, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696260

RESUMEN

The nickel-rich region of the system Ce-Ni-Si has been reinvestigated utilizing X-ray single-crystal, powder, and electron diffraction as well as electron microprobe and thermal analyses. Two novel hexagonal compounds, τ-Ce20+xNi36+ySi30-z and τ'-Ce30+xNi50+ySi42-z, were identified. The crystal structure of τ-Ce20+xNi36+ySi30-z was derived from single-crystal X-ray diffraction and found to be isotypic with the Sm10Ni20.8P15-type structure (S.G. P63/m, x = 1.8, y = 3.0, z = 1.8, a = 2.07156(2) nm, c = 0.39990(1) nm, RF = 0.048). Rietveld refinement of τ'-Ce30+xNi50+ySi42-z revealed isotypism with Tb15Ni28P21 (S.G. P63/m, a = 2.46926(13) nm, c = 0.40019(3) nm, RF = 0.058). The compound Ce3Ni4Si2 from X-ray single-crystal analysis was found to crystallize in a novel structure type with monoclinic unit cells (S.G. C2/c, a = 1.54708(3) nm, b = 0.58677(1) nm, c = 0.74331(1) nm, ß = 102.985(1)°, RF = 0.017). This compound belongs to a new homologue series in the RE-Ni-Si system (RE = La and Ce) with general formula of RE(3×2n)Ni(3×2n + 1)Si(2n+1); n = 0,1, ..., ∞. The crystal structure of this series is characterized by alternating numbers (2n) of corner-sharing Si-polyhedral blocks sandwiched between zigzag nickel chains. Higher-order members of this series are produced by the formation of more corner-sharing Si-polyhedral blocks due to removal of nickel chains.

2.
RSC Adv ; 9(37): 21451-21459, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35521323

RESUMEN

The temperature and phase stability of p-type skutterudites, DD0.7Fe3CoSb12, manufactured via various preparation techniques, all exhibiting a high ZT-level, have been studied by means of thermal analysis and Knudsen effusion mass spectrometry. The results from phase transformation measurements and characteristics of the evaporation of antimony, as the volatile element, supported by microstructure observations and by diffusion profiles are summarized and discussed in view of a full understanding of the degradation processes and knowledge of the long term operation stability of the bulk and nano-structured thermoelectrics studied. It was found out that the antimony evaporation is a complex diffusion kinetic process resulting in a stable Sb level dependent on the preparation route. The studied p-type skutterudites, DD0.7Fe3CoSb12, have proven their long term stability in thermoelectric devices at a maximum operation temperature of 600 °C. Complementary data on the structural, physical and mechanical properties of the materials are presented as well.

3.
Dalton Trans ; 45(12): 5262-73, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26895373

RESUMEN

Phase relations and crystal structures have been evaluated within the sections LaNi2Si2-LaZn2Si2 and CeNi2Si2-CeZn2Si2 at 800 °C using electron microprobe analysis and X-ray powder and single crystal structure analyses. Although the systems La-Zn-Si and Ce-Zn-Si at 800 °C do not reveal compounds such as "LaZn2Si2" or "CeZn2Si2", solid solutions {La,Ce}(Ni1-xZnx)2Si2 exist with the Ni/Zn substitution starting from {La,Ce}Ni2Si2 (ThCr2Si2-type; I4/mmm) up to x = 0.18 for Ce(Ni1-xZnx)2Si2 and x = 0.125 for La(Ni1-xZnx)2Si2. For higher Zn-contents 0.25 ≤ x ≤ 0.55 the solutions adopt the CaBe2Ge2-type (P4/nmm). The investigations are backed by single crystal X-ray diffraction data for Ce(Ni0.61Zn0.39)2Si2 (P4/nmm; a = 0.41022(1) nm, c = 0.98146(4) nm; RF = 0.012) and by Rietveld refinement for La(Ni0.56Zn0.44)2Si2 (P4/nmm; a = 0.41680(6) nm, c = 0.99364(4) nm; RF = 0.043). Interestingly, the Ce-Zn-Si system contains a ternary phase CeZn2(Si1-xZnx)2 of the ThCr2Si2 structure type (0.25 ≤ x ≤ 0.30 at 600 °C), which forms peritectically at T = 695 °C but does not include the composition "CeZn2Si2". The primitive high temperature tetragonal phase with the CaBe2Ge2-type has also been observed for the first time in the Ce-Ni-Si system at CeNi2+xSi2-x, x = 0.33 (single crystal data, P4/nmm; a = 0.40150(2) nm, c = 0.95210(2) nm; RF = 0.0163). Physical properties (from 400 mK to 300 K) including specific heat, electrical resistivity and magnetic susceptibility have been elucidated for Ce(Ni0.61Zn0.39)2Si2 and La(Ni0.56Zn0.44)2Si2. Ce(Ni0.61Zn0.39)2Si2 exhibits a Kondo-type ground state. Low temperature specific heat data of La(Ni0.56Zn0.44)2Si2 suggest a spin fluctuation scenario with an enhanced value of the Sommerfeld constant.

4.
Phys Chem Chem Phys ; 17(5): 3715-22, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25556702

RESUMEN

The best p-type skutterudites with ZT > 1.1 so far are didymium (DD) filled, Fe/Co substituted, Sb-based skutterudites. DD0.68Fe3CoSb12 was prepared using an annealing-reacting-melting-quenching technique followed by ball milling and hot pressing. After severe plastic deformation via high-pressure torsion (HPT), no phase changes but particular structural variations were achieved, leading to modified transport properties with higher ZT values. Although after measurement-induced heating some of the HPT induced defects were annealed out, a still attractive ZT-value was preserved. In this paper we focus on explanations for these changes via TEM investigations, Raman spectroscopy and texture measurements. The grain sizes and dislocation densities, evaluated from TEM images, showed that (i) the majority of cracks generated during high-pressure torsion are healed during annealing, leaving only small pores, that (ii) the grains have grown, and that (iii) the dislocation density is decreased. While Raman spectra indicate that after HPT processing and annealing the vibration modes related to the shorter Sb-Sb bonds in the Sb4 rings are more affected than those related to the longer Sb-Sb bonds, almost no visible changes were observed in the pole intensity and/or orientation.

5.
Dalton Trans ; 42(8): 2913-20, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23243666

RESUMEN

A systematic investigation is presented on the influence of Sn-substitution in the clathrate-I compound Ba(8)Zn(x)Ge(46-x-y)Sn(y), particularly for the crystal structure and thermoelectric properties including electrical resistivity, Seebeck coefficient, and thermal conductivity. Two series of samples were prepared to explore the changes for different Sn-contents, (y), and to define the optimum Zn-content, (x), for Ba(8)Zn(x)Ge(46-x-y)Sn(y). Sn-incorporation leads to a linear expansion of the unit cell parameters. Sn-atoms occupy the 6d and 24k positions of the clathrate type-I structure (SG Pm3n, standardized setting). Whereas the electrical resistivity and the Seebeck coefficient modify only slightly compared to Ba(8)Zn(x)Ge(46-x), the thermal conductivity is significantly decreased by the Sn-atoms incorporated into the clathrate-I framework. Furthermore the charge carrier mobility is larger and the effective mass (m* = 1.7 m(e)) is much smaller than those of the ternary compound Ba(8)Zn(x)Ge(46-x). The maximum thermoelectric figure of merit is improved by 80% and reaches ZT = 0.82 at 850 K for Ba(8)Zn(7.66)Ge(36.55)Sn(1.79).

6.
Inorg Chem ; 50(16): 7669-75, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21770375

RESUMEN

The crystal structures of three ternary Ni-Zn borides have been elucidated by means of X-ray single-crystal diffraction (XSC) and X-ray powder diffraction techniques (XPD) in combination with electron microprobe analyses (EMPA) defining the Ni/Zn ratio. Ni(21)Zn(2)B(24) crystallizes in a unique structure type (space group I4/mmm; a = 0.72103(1) nm and c = 1.42842(5) nm; R(F)(2) = 0.017), which contains characteristic isolated cages of B(20) units composed of two corrugated octogonal boron rings, which are linked at four positions via boron atoms. The B(20) units appear to have eight-membered rings on all six faces like the faces of a cube. Each face is centered by a nickel atom. The six nickel atoms are arranged in the form of an octahedron nested within the B(20) unit. Such a boron aggregation is unique and has never been encountered before in metal-boron chemistry. The crystal structure of Ni(12)ZnB(8-x) (x = 0.43; space group Cmca, a = 1.05270(2) nm, b = 1.45236(3) nm, c = 1.45537(3) nm; R(F)(2) = 0.028) adopts the structure type of Ni(12)AlB(8) with finite zigzag chains of five boron atoms. The compound Ni(3)ZnB(2) crystallizes in a unique structure type (space group C2/m, a = 0.95101(4) nm, b = 0.28921(4) nm, c = 0.84366(3) nm, ß = 101.097(3)°, and R(F)(2) = 0.020) characterized by B(4) zigzag chain fragments with B-B bond lengths of 0.183-0.185 nm. The Ni(3)ZnB(2) structure is related to the Dy(3)Ni(2) type.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA