Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomark Insights ; 3: 179-189, 2008 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18677422

RESUMEN

Infrared (IR) absorbance of cellular biomolecules generates a vibrational spectrum, which can be exploited as a "biochemical fingerprint" of a particular cell type. Biomolecules absorb in the mid-IR (2-20 mum) and Fourier-transform infrared (FTIR) microspectroscopy applied to discriminate different cell types (exfoliative cervical cytology collected into buffered fixative solution) was evaluated. This consisted of cervical cytology free of atypia (i.e. normal; n = 60), specimens categorised as containing low-grade changes (i.e. CIN1 or LSIL; n = 60) and a further cohort designated as high-grade (CIN2/3 or HSIL; n = 60). IR spectral analysis was coupled with principal component analysis (PCA), with or without subsequent linear discriminant analysis (LDA), to determine if normal versus low-grade versus high-grade exfoliative cytology could be segregated. With increasing severity of atypia, decreases in absorbance intensity were observable throughout the 1,500 cm(-1) to 1,100 cm(-1) spectral region; this included proteins (1,460 cm(-1)), glycoproteins (1,380 cm(-1)), amide III (1,260 cm(-1)), asymmetric (nu(as)) PO(2) (-) (1,225 cm(-1)) and carbohydrates (1,155 cm(-1)). In contrast, symmetric (nu(s)) PO(2) (-) (1,080 cm(-1)) appeared to have an elevated intensity in high-grade cytology. Inter-category variance was associated with protein and DNA conformational changes whereas glycogen status strongly influenced intra-category. Multivariate data reduction of IR spectra using PCA with LDA maximises inter-category variance whilst reducing the influence of intra-class variation towards an objective approach to class cervical cytology based on a biochemical profile.

2.
Stem Cells ; 26(1): 108-18, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17901405

RESUMEN

Complex biomolecules absorb in the mid-infrared (lambda = 2-20 microm), giving vibrational spectra associated with structure and function. We used Fourier transform infrared (FTIR) microspectroscopy to "fingerprint" locations along the length of human small and large intestinal crypts. Paraffin-embedded slices of normal human gut were sectioned (10 microm thick) and mounted to facilitate infrared (IR) spectral analyses. IR spectra were collected using globar (15 microm x 15 microm aperture) FTIR microspectroscopy in reflection mode, synchrotron (

Asunto(s)
Biomarcadores/análisis , Mucosa Intestinal/citología , Espectroscopía Infrarroja por Transformada de Fourier , Células Madre/citología , Humanos , Inmunohistoquímica , Análisis de Componente Principal
3.
J Microsc ; 228(Pt 3): 366-72, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18045331

RESUMEN

The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.


Asunto(s)
Córnea/citología , Microespectrofotometría/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Células Madre/química , Animales , Bovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA