Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 31(8): 1265-1276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38760633

RESUMEN

To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.


Asunto(s)
Microscopía por Crioelectrón , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Modelos Moleculares , ADN de Hongos/metabolismo , ADN de Hongos/química , Multimerización de Proteína
3.
Nature ; 606(7916): 1007-1014, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705812

RESUMEN

The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45-MCM-GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown1. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.


Asunto(s)
Replicación del ADN , ADN , Proteínas de Mantenimiento de Minicromosoma , Origen de Réplica , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Técnicas In Vitro , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares , Desnaturalización de Ácido Nucleico , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Front Microbiol ; 11: 585717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123115

RESUMEN

The strict control of bacterial cell proliferation by proteolysis is vital to coordinate cell cycle processes and to adapt to environmental changes. ATP-dependent proteases of the AAA + family are molecular machineries that contribute to cellular proteostasis. Their activity is important to control the level of various proteins, including those that are essential for the regulation of DNA replication. Since the process of proteolysis is irreversible, the protease activity must be tightly regulated and directed toward a specific substrate at the exact time and space in a cell. In our mini review, we discuss the impact of phosphate-containing molecules like DNA and inorganic polyphosphate (PolyP), accumulated during stress, on protease activities. We describe how the directed proteolysis of essential replication proteins contributes to the regulation of DNA replication under normal and stress conditions in bacteria.

5.
Nucleic Acids Res ; 48(10): 5457-5466, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32282902

RESUMEN

The decision whether to replicate DNA is crucial for cell survival, not only to proliferate in favorable conditions, but also to adopt to environmental changes. When a bacteria encounters stress, e.g. starvation, it launches the stringent response, to arrest cell proliferation and to promote survival. During the stringent response a vast amount of polymer composed of phosphate residues, i.e. inorganic polyphosphate (PolyP) is synthesized from ATP. Despite extensive research on PolyP, we still lack the full understanding of the PolyP role during stress. It is also elusive what is the mechanism of DNA replication initiation arrest in starved Escherichia coli cells. Here, we show that during stringent response PolyP activates Lon protease to degrade selectively the replication initiaton protein DnaA bound to ADP, but not ATP. In contrast to DnaA-ADP, the DnaA-ATP does not interact with PolyP, but binds to dnaA promoter to block dnaA transcription. The systems controlling the ratio of nucleotide states of DnaA continue to convert DnaA-ATP to DnaA-ADP, which is proteolysed by Lon, thereby resulting in the DNA replication initiation arrest. The uncovered regulatory mechanism interlocks the PolyP-dependent protease activation with the ATP/ADP cycle of dual-functioning protein essential for bacterial cell proliferation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Polifosfatos/metabolismo , Proteasa La/metabolismo , Estrés Fisiológico/genética , Adenosina Difosfato/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA