Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 836: 155656, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35513154

RESUMEN

Sustainable management of natural water resources and food security in the face of changing climate conditions is critical to the livelihood of coastal communities. Increasing inundation and saltwater intrusion (SWI) will likely adversely affect agricultural production and the associated beach access for tourism. This study uses an integrated surface-ground water model to introduce a new approach for retardation of SWI that consists of placing aquifer fill materials along the existing shoreline using Coastal Land Reclamation (CLR). The modeling results suggest that the artificial aquifer materials could be designed to decrease SWI by increasing the infiltration area of coastal precipitation, collecting runoffs from the catchment area, and applying treated wastewater or desalinated brackish water-using coastal wave energy to reduce water treatment costs. The SEAWAT model was applied to verify that it correctly addressed Henry's problem and then applied to the Biscayne aquifer, Florida, USA. In this study, to better inform Coastal Aquifer Management (CAM), we developed four modeling scenarios, namely, Physical Surface Barriers (PSB), including the artificial aquifer widths, permeability, and side slopes and recharge. In the base case scenario without artificial aquifer placement, results show that seawater levels would increase aquifer salinity and displace large amounts of presently available fresh groundwater. More specifically, for the Biscayne aquifer, approximately 0.50% of available fresh groundwater will be lost (that is, 41,192 m3) per km of the width of the aquifer considering the increasing seawater level. Furthermore, the results suggest that placing the PSB aquifer with a smaller permeability of <100 m per day at a width of approximately 615 m increases the available fresh groundwater by approximately 45.20 and 43.90% per km of shoreline, respectively. Similarly, decreasing the slope on the aquifer-ocean side and increasing the aquifer recharge will increase freshwater availability by about 43.90 and 44.50% per km of the aquifer. Finally, placing an aquifer fill along the shallow shoreline increases net revenues to the coastal community through increased agricultural production and possibly tourism that offset fill placement and water treatment costs. This study is useful for integrated management of coastal zones by delaying aquifer salinity, protecting fresh groundwater bodies, increasing agricultural lands, supporting surface water supplies by harvesting rainfall and flash flooding, and desalinating saline water using wave energy. Also, the feasibility of freshwater storage and costs for CAM is achieved in this study.


Asunto(s)
Cambio Climático , Agua Subterránea , Análisis Costo-Beneficio , Salinidad , Agua de Mar
2.
Environ Monit Assess ; 190(8): 458, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29995189

RESUMEN

Creating or recruiting new riparian forests to improve Lower Putah Creek (LPC) ecosystem functions is challenging under the modified stream flow regime developed after historic gravel mining and installation of Monticello Dam upstream. Hydrologic connectivity between riparian trees, shallow groundwater, and the low flow channel is essential towards maintaining these forests and related habitats through the annual summer and multi-year drought periods typical in this Sacramento Valley region of California. Despite increased average summer flows, significant mature cottonwood and willow tree mortality along the LPC riparian areas below the Putah Creek diversion dam in 2014 raised concerns over the soil and hydrologic factors affecting riparian vegetation survival. A forensic analysis was conducted combining annual canopy coverage fractions and tree ring studies with daily soil-water balances, low flow records, and available groundwater level Information from the past few decades to determine the key hydrologic factors affecting riparian tree survival along the LPC. The 2011-2016 drought was linked with greater than prior average soil-water deficits in 2012-2015 and lower initial soil-water storage on March 1 of 2012 and 2014 that would be expected to stress the trees. However, such stress was not apparent in decreased tree ring spacing during this period from mature (40-50 years old), deceased, and living trees. Tree canopy coverage declined dramatically (by as much as 50% as compared to the previous decade average) only in the summer of the 2014 despite a ~ 35% increase in average summer flows from 2011 to 2014. However, the regional water table aquifer levels declined at an average rate of ~ 35 mm/day in 2014 (as compared to ~ 17 mm/day in previous decade) and by several meters overall between 2011 and 2016 suggesting that deceased trees lacked access to the water table aquifer or lateral stream seepage. The increased rates of water table decline and overall depth may be associated with a large increase in adjacent irrigated almond orchard areas in 2014-2016. Knowledge of the dynamic hydrologic factors controlling sustainability of riparian trees should better inform and guide future tree restoration efforts along the LPC.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Hidrología , Populus/fisiología , Ríos/química , Salix/fisiología , California , Sequías , Agua Subterránea , Estaciones del Año , Suelo , Árboles , Agua
3.
Water Environ Res ; 86(4): 314-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24851327

RESUMEN

The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Agua Subterránea/análisis , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Humedales , Compuestos de Amonio/metabolismo , Cationes/metabolismo , Nitratos/metabolismo , Porosidad , Estaciones del Año , Eliminación de Residuos Líquidos/economía
4.
Water Environ Res ; 77(7): 3047-53, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16381152

RESUMEN

Although constructed wetland treatment systems have been used in a variety of applications, uncertainty in adequately determining flow conditions or hydraulic residence times ("hydraulic efficiencies") and degradation model parameters remains a problem with their design. Breakthrough or impulse-type tracer studies in constructed wetlands often result in residence-time distributions exhibiting long skewed "tails" suggesting multiple flow channels or perhaps unrealistically large dispersion factors. A fractional-flow analysis is developed here to quantify possible flow non-uniformity in a subsurface-flow constructed wetland and is then used to assess the effects of non-uniformity and degradation model parameter variability on constituent (for example, chemical oxygen demand) removal. A model application to tracer data developed previously demonstrates how flow non-uniformity alone can account for significant "tailing" and can be related to even moderate estimated dispersion numbers. From the analysis, it is evident that flow non-uniformity is of greater concern than decay parameter uncertainty, and that, from a constructed wetland design and operation perspective, every effort should be made to ensure relative flow uniformity across the constructed wetland.


Asunto(s)
Ecosistema , Modelos Teóricos
5.
Environ Monit Assess ; 98(1-3): 69-92, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15473530

RESUMEN

Inter-tidal marshes are dynamic diverse ecosystems at the transition zone between terrestrial and ocean environments. Geomorphologically, inter-tidal salt marshes are vegetated land-forms at elevations slightly greater than mean tidal levels that have distributed channels formed under ebb (drainage) tidal flows that widen and deepen in the seaward direction. The drainage channels enable tidal flows to circulate sediments and nutrients through the marsh system during normal tidal events, while depositing sediments during storm or seismic events. This dynamic system encourages considerable biodiversity while simultaneously providing water quality enhancement features that service marsh terrestrial life and marine life in the estuary. Reservoir creation limiting sediment transport, anticipated large increases in sea levels as well as agricultural and urban development have resulted in significant loss of inter-tidal marshes and subsequent adverse impacts on waterfowl, infauna and fisheries. The complex and continuously changing marsh channel hydraulics and sedimentary processes have severely constrained quantitative modeling of these marsh systems such that restoration/creation efforts remain something of an empirical science and further assessments are needed. The purpose of this paper is to outline current understanding of salt marsh hydrodynamics, sediment accretion processes and subsequent response of marsh vegetation to set the stage for assessment of a marsh restoration effort along San Pablo Bay near San Francisco, California. Several kilometers of drainage channels were constructed in a 624 ha disturbed salt marsh to restore tidal circulation and vegetation so as to enhance habitat for threatened species (e.g. clapper rail, harvest mouse, delta smelt and potentially anadromous fish species). Two distinct drainage channel systems ('east' and 'west') were installed having similar channel dimensions common to salt marshes in the region, but having design bankfull tidal prism volumes differing by a factor of two. Following channel excavation, main channel tidal flows and sediment loads as well as marsh sediment accretion rates were monitored to assess the relative success of the excavation in restoring tidal circulation and vegetation (Salicornia spp.) to the marsh. Annual aerial surveys corroborated with ground-truthing indicated that marsh vegetation rapidly expanded, from 40 to 85% coverage several years following excavation. The 'east' channel intake was nearly completely silted in within three years. However, channel surveys and flow measurements indicated that the 'east' channel system tidal prism was only about 1200 m3, more than an order of magnitude less than that of the stable 'west' channel system. Marsh sediment accretion rates were on the order of 7-8 mm yr(-1), a rate common to the Pacific coast region that exceeds estimated sea level rise rates of approximately 2 mm yr(-1). East channel network siltation resulted in storm and spring tidal flood ponding such that marsh vegetation coverage decreased to 51% of the marsh area and related habitat expansion decreased. These results are considered in terms of the primary inter-tidal marsh factors affecting possible restoration/creation strategies.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Atriplex/crecimiento & desarrollo , California , Chenopodiaceae/crecimiento & desarrollo , Sedimentos Geológicos , Salsola/crecimiento & desarrollo , Agua de Mar , Factores de Tiempo , Movimientos del Agua
6.
Water Environ Res ; 75(5): 412-21, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14587952

RESUMEN

Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.


Asunto(s)
Ecosistema , Eliminación de Residuos Líquidos , Contaminantes del Agua/aislamiento & purificación , Purificación del Agua/métodos , California , Residuos Industriales , Compuestos Orgánicos/aislamiento & purificación , Oxígeno/química , Movimientos del Agua , Vino
7.
J Environ Manage ; 69(2): 157-68, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14550658

RESUMEN

A numerical simulation model of pesticide runoff through vegetative filer strips (PRVFS) was developed as a tool for investigating the effects of pesticide transport mechanisms on VFS design in dormant-sprayed orchard. The PRVFS model was developed applying existing theories such as kinematic wave theory and mixing zone theory for pesticide transport in the bare soil area. For VFS area, the model performs flow routing by simple mass accounting in sequential segments and the pesticide mass balance by considering pesticide washoff and adsorption processes on the leaf, vegetative litter, root zone and soil. Model sensitivity analysis indicated that pesticide transfer from surface soil to overland flow and pesticide washoff from the VFS were important mechanisms affecting diazinon transport. The VFS cover ratio and rainfall intensity can be important design parameters for controlling diazinon runoff using inter-row VFS in orchard. The PRVFS model was validated using micro-ecosystem simulation of diazinon transport for 0, 50 and 100% VFS cover conditions. The PRVFS model is shown to be a beneficial tool for evaluating and analyzing possible best management practices for controlling offsite runoff of dormant-sprayed diazinon in orchards during the rainy season.


Asunto(s)
Diazinón/análisis , Insecticidas/análisis , Modelos Teóricos , Agricultura , Filtración , Raíces de Plantas , Lluvia , Estaciones del Año , Suelo , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA