Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18267, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880279

RESUMEN

The skeletal muscle contraction is determined by cross-bridge formation between the myosin heads and the actin active sites. When the muscle contracts, it shortens, increasing its longitudinal shear elastic modulus ([Formula: see text]). Structurally, skeletal muscle can be considered analogous to the molecular receptors that form receptor-ligand complexes and exhibit specific ligand-binding dynamics. In this context, this work aims to apply elastography and the ligand-binding framework to approach the possible intrinsic mechanisms behind muscle synergism. Based on the short-range stiffness principle and the acoustic-elasticity theory, we define the coefficient [Formula: see text], which is directly related to the fraction saturation of molecular receptors and links the relative longitudinal deformation of the muscle to its [Formula: see text]. We show that such a coefficient can be obtained directly from [Formula: see text] estimates, thus calculating it for the biceps brachii, brachioradialis, and brachialis muscles during isometric elbow flexion torque (τ) ramps. The resulting [Formula: see text] curves were analyzed by conventional characterization methods of receptor-ligand systems to study the dynamical behavior of each muscle. The results showed that, depending on muscle, [Formula: see text] exhibits typical ligand-binding dynamics during joint torque production. Therefore, the above indicates that these different behaviors describe the longitudinal shortening pattern of each muscle during load sharing. As a plausible interpretation, we suggested that this could be related to the binding kinetics of the cross-bridges during their synergistic action as torque increases. Likewise, it shows that elastography could be useful to assess contractile processes at different scales related to the change in the mechanical properties of skeletal muscle.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Articulación del Codo , Diagnóstico por Imagen de Elasticidad/métodos , Ligandos , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Articulación del Codo/fisiología , Contracción Isométrica/fisiología
2.
Physiol Rep ; 9(15): e14955, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34337894

RESUMEN

The shear elastic modulus is one of the most important parameters to characterize the mechanical behavior of soft tissues. In biomechanics, ultrasound elastography is the gold standard for measuring and mapping it locally in skeletal muscle in vivo. However, their applications are limited to the laboratory or clinic. Thus, low-frequency elastography methods have recently emerged as a novel alternative to ultrasound elastography. Avoiding the use of high frequencies, these methods allow obtaining a mean value of bulk shear elasticity. However, they are frequently susceptible to diffraction, guided waves, and near field effects, which introduces biases in the estimates. The goal of this work is to test the performance of the non-ultrasound surface wave elastography (NU-SWE), which is portable and is based on new algorithms designed to correct the incidence of such effects. Thus, we show its first application to muscle biomechanics. We performed two experiments to assess the relationships of muscle shear elasticity versus joint torque (experiment 1) and the electromyographic activity level (experiment 2). Our results were comparable regarding previous works using the reference ultrasonic methods. Thus, the NU-SWE showed its potentiality to get wide the biomechanical applications of elastography in many areas of health and sports sciences.


Asunto(s)
Módulo de Elasticidad/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Electromiografía/métodos , Músculo Esquelético/fisiología , Torque , Adulto , Fenómenos Biomecánicos , Femenino , Voluntarios Sanos , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen
3.
J Acoust Soc Am ; 142(5): 2919, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29195471

RESUMEN

In dynamic elastography, the goal is to estimate the Young's modulus from audio-frequency wave propagation in soft-tissues. Within this frequency range, the shear wavelength is centimeter-sized while the compressional wavelength is meter-sized. Thus, the experimental data are usually collected in the near-field of the source. Near-field effects have been widely studied for bulk wave propagation. However, the near- and transient-fields of surface and guided waves have received less attention. In this work, the transient surface displacement field in soft-solid elastic plates in vacuum is analyzed. Due to the high Poisson's ratio, mode conversion has special characteristics in soft-solids. They are analyzed through this work where it is shown that the transient-field over the surface can be interpreted by tracing a few reflections. The authors show the existence of a critical distance needed for the formation of Rayleigh-Lamb modes. Below this distance, only direct surface waves propagate without contribution from reflected waves. Thus, the dispersion curve differs from that predicted by Rayleigh-Lamb modes. Instead, the authors propose a model based on the interference of surface waves, which agree with the experimental data. In addition, the conditions needed in order to retrieve the shear wave phase velocity from the surface field are given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA