Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Foot Ankle Res ; 16(1): 11, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869383

RESUMEN

BACKGROUND: Foot orthoses (FOs) are commonly prescribed devices to attenuate biomechanical deficits and improve physical function in patients with musculoskeletal disorders. It is postulated that FOs provide their effects through the production of reaction forces at the foot-FOs interface. An important parameter to provide these reaction forces is their medial arch stiffness. Preliminary results suggest that adding extrinsic additions to FOs (e.g., rearfoot posts) increases their medial arch stiffness. A better understanding of how FOs medial arch stiffness can be modulated by changing structural factors is necessary to better customise FOs for patients. The objectives of this study were to compare FOs stiffness and force required to lower the FOs medial arch in three thicknesses and two models (with and without medially wedged forefoot-rearfoot posts). METHODS: Two models of FOs, 3D printed in Polynylon-11, were used: (1) without extrinsic additions (mFO), and (2) with forefoot-rearfoot posts and a 6o medial wedge (FO6MW). For each model, three thicknesses (2.6 mm, 3.0 mm, and 3.4 mm) were manufactured. FOs were fixed to a compression plate and vertically loaded over the medial arch at a rate of 10 mm/minute. Two-way ANOVAs and Tukey post-hoc tests with Bonferroni corrections were used to compare medial arch stiffness and force required to lower the arch across conditions. RESULTS: Regardless of the differing shell thicknesses, the overall stiffness was 3.4 times greater for FO6MW compared to mFO (p < 0.001). FOs with 3.4 mm and 3.0 mm thicknesses displayed 1.3- and 1.1- times greater stiffness than FOs with a thickness of 2.6 mm. FOs with a thickness of 3.4 mm also exhibited 1.1 times greater stiffness than FOs with a thickness of 3.0 mm. Overall, the force to lower the medial arch was up to 3.3 times greater for FO6MW than mFO and thicker FOs required greater force (p < 0.001). CONCLUSIONS: An increased medial longitudinal arch stiffness is seen in FOs following the addition of 6o medially inclined forefoot-rearfoot posts, and when the shell is thicker. Overall, adding forefoot-rearfoot posts to FOs is significantly more efficient than increasing shell thickness to enhance these variables should that be the therapeutic aim.


Asunto(s)
Ortesis del Pié , Enfermedades Musculoesqueléticas , Humanos , Pie , Análisis de Varianza , Comercio
2.
Cochrane Database Syst Rev ; 8: CD013368, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993829

RESUMEN

BACKGROUND: Lower-limb running injuries are common. Running shoes have been proposed as one means of reducing injury risk. However, there is uncertainty as to how effective running shoes are for the prevention of injury. It is also unclear how the effects of different characteristics of running shoes prevent injury. OBJECTIVES: To assess the effects (benefits and harms) of running shoes for preventing lower-limb running injuries in adult runners. SEARCH METHODS: We searched the following databases: CENTRAL, MEDLINE, Embase, AMED, CINAHL Plus and SPORTDiscus plus trial registers WHO ICTRP and ClinicalTrials.gov. We also searched additional sources for published and unpublished trials. The date of the search was June 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and quasi-RCTs involving runners or military personnel in basic training that either compared a) a running shoe with a non-running shoe; b) different types of running shoes (minimalist, neutral/cushioned, motion control, stability, soft midsole, hard midsole); or c) footwear recommended and selected on foot posture versus footwear not recommended and not selected on foot posture for preventing lower-limb running injuries. Our primary outcomes were number of people sustaining a lower-limb running injury and number of lower-limb running injuries. Our secondary outcomes were number of runners who failed to return to running or their previous level of running, runner satisfaction with footwear, adverse events other than musculoskeletal injuries, and number of runners requiring hospital admission or surgery, or both, for musculoskeletal injury or adverse event. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed study eligibility and performed data extraction and risk of bias assessment. The certainty of the included evidence was assessed using GRADE methodology. MAIN RESULTS: We included 12 trials in the analysis which included a total of 11,240 participants, in trials that lasted from 6 to 26 weeks and were carried out in North America, Europe, Australia and South Africa. Most of the evidence was low or very low certainty as it was not possible to blind runners to their allocated running shoe, there was variation in the definition of an injury and characteristics of footwear, and there were too few studies for most comparisons. We did not find any trials that compared running shoes with non-running shoes. Neutral/cushioned versus minimalist (5 studies, 766 participants) Neutral/cushioned shoes may make little or no difference to the number of runners sustaining a lower-limb running injuries when compared with minimalist shoes (low-certainty evidence) (risk ratio (RR) 0.77, 95% confidence interval (CI) 0.59 to 1.01). One trial reported that 67% and 92% of runners were satisfied with their neutral/cushioned or minimalist running shoes, respectively (RR 0.73, 95% CI 0.47 to 1.12). Another trial reported mean satisfaction scores ranged from 4.0 to 4.3 in the neutral/ cushioned group and 3.6 to 3.9 in the minimalist running shoe group out of a total of 5. Hence neutral/cushioned running shoes may make little or no difference to runner satisfaction with footwear (low-certainty evidence). Motion control versus neutral / cushioned (2 studies, 421 participants) It is uncertain whether or not motion control shoes reduce the number of runners sustaining a lower-limb running injuries when compared with neutral / cushioned shoes because the quality of the evidence has been assessed as very low certainty (RR 0.92, 95% CI 0.30 to 2.81). Soft midsole versus hard midsole (2 studies, 1095 participants) Soft midsole shoes may make little or no difference to the number of runners sustaining a lower-limb running injuries when compared with hard midsole shoes (low-certainty of evidence) (RR 0.82, 95% CI 0.61 to 1.10). Stability versus neutral / cushioned (1 study, 57 participants) It is uncertain whether or not stability shoes reduce the number of runners sustaining a lower-limb running injuries when compared with neutral/cushioned shoes because the quality of the evidence has been assessed as very low certainty (RR 0.49, 95% CI 0.18 to 1.31). Motion control versus stability (1 study, 56 participants) It is uncertain whether or not motion control shoes reduce the number of runners sustaining a lower-limb running injuries when compared with stability shoes because the quality of the evidence has been assessed as very low certainty (RR 3.47, 95% CI 1.43 to 8.40). Running shoes prescribed and selected on foot posture (3 studies, 7203 participants) There was no evidence that running shoes prescribed based on static foot posture reduced the number of injuries compared with those who received a shoe not prescribed based on foot posture in military recruits (Rate Ratio 1.03, 95% CI 0.94 to 1.13). Subgroup analysis confirmed these findings were consistent between males and females. Therefore, prescribing running shoes and selecting on foot posture probably makes little or no difference to lower-limb running injuries (moderate-certainty evidence). Data were not available for all other review outcomes. AUTHORS' CONCLUSIONS: Most evidence demonstrates no reduction in lower-limb running injuries in adults when comparing different types of running shoes. Overall, the certainty of the evidence determining whether different types of running shoes influence running injury rates was very low to low, and as such we are uncertain as to the true effects of different types of running shoes upon injury rates. There is no evidence that prescribing footwear based on foot type reduces running-related lower-limb injures in adults. The evidence for this comparison was rated as moderate and as such we can have more certainty when interpreting these findings. However, all three trials included in this comparison used military populations and as such the findings may differ in recreational runners.  Future researchers should develop a consensus definition of running shoe design to help standardise classification. The definition of a running injury should also be used consistently and confirmed via health practitioners. More researchers should consider a RCT design to increase the evidence in this area. Lastly, future work should look to explore the influence of different types or running shoes upon injury rates in specific subgroups.


Asunto(s)
Extremidad Inferior , Zapatos , Adulto , Europa (Continente) , Femenino , Humanos , Masculino
3.
Br J Sports Med ; 55(19): 1106-1118, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33785535

RESUMEN

OBJECTIVE: To develop a best practice guide for managing people with plantar heel pain (PHP). METHODS: Mixed-methods design including systematic review, expert interviews and patient survey. DATA SOURCES: Medline, Embase, CINAHL, SPORTDiscus, Cochrane Central Register of Controlled Trials, trial registries, reference lists and citation tracking. Semi-structured interviews with world experts and a patient survey. ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) evaluating any intervention for people with PHP in any language were included subject to strict quality criteria. Trials with a sample size greater than n=38 were considered for proof of efficacy. International experts were interviewed using a semi-structured approach and people with PHP were surveyed online. RESULTS: Fifty-one eligible trials enrolled 4351 participants, with 9 RCTs suitable to determine proof of efficacy for 10 interventions. Forty people with PHP completed the online survey and 14 experts were interviewed resulting in 7 themes and 38 subthemes. There was good agreement between the systematic review findings and interview data about taping (SMD: 0.47, 95% CI 0.05 to 0.88) and plantar fascia stretching (SMD: 1.21, 95% CI 0.78 to 1.63) for first step pain in the short term. Clinical reasoning advocated combining these interventions with education and footwear advice as the core self-management approach. There was good expert agreement with systematic review findings recommending stepped care management with focused shockwave for first step pain in the short-term (OR: 1.89, 95% CI 1.18 to 3.04), medium-term (SMD 1.31, 95% CI 0.61 to 2.01) and long-term (SMD 1.67, 95% CI 0.88 to 2.45) and radial shockwave for first step pain in the short term (OR: 1.66, 95% CI 1.00 to 2.76) and long term (OR: 1.78, 95% CI 1.07 to 2.96). We found good agreement to 'step care' using custom foot orthoses for general pain in the short term (SMD: 0.41, 95% CI 0.07 to 0.74) and medium term (SMD: 0.55, 95% CI 0.09 to 1.02). CONCLUSION: Best practice from a mixed-methods study synthesising systematic review with expert opinion and patient feedback suggests core treatment for people with PHP should include taping, stretching and individualised education. Patients who do not optimally improve may be offered shockwave therapy, followed by custom orthoses.


Asunto(s)
Fascitis Plantar/terapia , Manejo del Dolor , Razonamiento Clínico , Talón , Humanos , Dolor , Ensayos Clínicos Controlados Aleatorios como Asunto
5.
J Foot Ankle Res ; 7(1): 53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25598843

RESUMEN

BACKGROUND: Dynamic foot function is considered a risk factor for lower limb overuse injuries including Achilles tendinopathy, shin pain, patellofemoral pain and stress fractures. However, no single source has systematically appraised and summarised the literature to evaluate this proposed relationship. The aim of this systematic review was to investigate dynamic foot function as a risk factor for lower limb overuse injury. METHODS: A systematic search was performed using Medline, CINAHL, Embase and SportDiscus in April 2014 to identify prospective cohort studies that utilised dynamic methods of foot assessment. Included studies underwent methodological quality appraisal by two independent reviewers using an adapted version of the Epidemiological Appraisal Instrument (EAI). Effects were expressed as standardised mean differences (SMD) for continuous scaled data, and risk ratios (RR) for nominal scaled data. RESULTS: Twelve studies were included (total n = 3,773; EAI 0.44 to 1.20 out of 2.00, representing low to moderate quality). There was limited to very limited evidence for forefoot, midfoot and rearfoot plantar loading variables (SMD 0.47 to 0.85) and rearfoot kinematic variables (RR 2.67 to 3.43) as risk factors for patellofemoral pain; and plantar loading variables (forefoot, midfoot, rearfoot) as risk factors for Achilles tendinopathy (SMD 0.81 to 1.08). While there were significant findings from individual studies for plantar loading variables (SMD 0.3 to 0.84) and rearfoot kinematic variables (SMD 0.29 to 0.62) as risk factors for 'non-specific lower limb overuse injuries', these were often conflicting regarding different anatomical regions of the foot. Findings from three studies indicated no evidence that dynamic foot function is a risk factor for iliotibial band syndrome or lower limb stress fractures. CONCLUSION: This systematic review identified very limited evidence that dynamic foot function during walking and running is a risk factor for patellofemoral pain, Achilles tendinopathy, and non-specific lower limb overuse injuries. It is unclear whether these risk factors can be identified clinically (without sophisticated equipment), or modified to prevent or manage these injuries. Future prospective cohort studies should address methodological limitations, avoid grouping different lower limb overuse injuries, and explore clinically meaningful representations of dynamic foot function.

6.
J Foot Ankle Res ; 7(1): 55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25558288

RESUMEN

BACKGROUND: Static measures of foot posture are regularly used as part of a clinical examination to determine the need for foot level interventions. This is based on the premise that pronated and supinated foot postures may be risk factors for or associated with lower limb injury. This systematic review and meta-analysis investigates foot posture (measured statically) as a potential risk factor for lower limb overuse injuries. METHODS: A systematic search was performed using Medline, CINAHL, Embase, SportDiscus in April 2014, to identify prospective cohort studies that investigated foot posture and function as a risk factor for lower limb overuse injury. Eligible studies were classified based on the method of foot assessment: (i) static foot posture assessment; and/or (ii) dynamic foot function assessment. This review presents studies evaluating static foot posture. The methodological quality of included studies was evaluated by two independent reviewers, using an adapted version of the Epidemiological Appraisal Instrument (EAI). Where possible, effects were expressed as standardised mean differences (SMD) for continuous scaled data, and risk ratios (RR) for nominal scaled data. Meta-analysis was performed where injuries and outcomes were considered homogenous. RESULTS: Twenty-one studies were included (total n = 6,228; EAI 0.8 to 1.7 out of 2.0). There was strong evidence that a pronated foot posture was a risk factor for medial tibial stress syndrome (MTSS) development and very limited evidence that a pronated foot posture was a risk factor for patellofemoral pain development, although associated effect sizes were small (0.28 to 0.33). No relationship was identified between a pronated foot posture and any other evaluated pathology (i.e. foot/ankle injury, bone stress reactions and non-specific lower limb overuse injury). CONCLUSION: This systematic review identified strong and very limited evidence of small effect that a pronated foot posture is a risk factor for MTSS and patellofemoral pain respectively. Evaluation of static foot posture should be included in a multifactorial assessment for both MTSS and patellofemoral pain, although only as a part of the potential injury risk profile. Whilst the included measures are clinically applicable, further studies are required to determine their relationship with dynamic foot function.

7.
J Am Podiatr Med Assoc ; 102(4): 278-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22826326

RESUMEN

BACKGROUND: Kinematic observations are inconsistent in predicting lower-extremity injury risk, and research suggests that kinetic variables may be more important in this regard. Before kinetics can be prospectively investigated, we need reliable ways of measuring them clinically. A measurement instrument was manufactured that closely mirrors a manual test used to clinically estimate supination resistance force. The reliability of the instrument and the validity of the clinical test were investigated. METHODS: The left feet of 26 healthy individuals (17 men and 9 women; mean ± SD age, 25.9 ± 9.2 years; mean ± SD weight, 77.7 ± 13.3 kg) were assessed. Foot Posture Index (FPI-6), manual supination resistance, and machine supination resistance were measured. Intrarater and interrater reliability of all of the measurements were calculated. Correlations of the supination resistance measured by the device with FPI-6, the manual supination resistance test, and body weight were investigated. RESULTS: Interrater reliability of all of the measurements was generally poor. The supination resistance machine correlated highly with the manual supination test for the rater experienced with its use. Supination resistance measurements correlated poorly with the FPI-6 and weakly with body weight. CONCLUSIONS: The supination resistance machine was shown to have sufficient limits of agreement for the study, but improvements need to be made for more meaningful research going forward. In this study, the force required to supinate a foot was independent of its posture, and approximately 12% of it was explained by body weight. Further work is required with a much larger sample size to build regression models that sufficiently predict supination resistance force and that will be of clinical use. The manual supination test is a valid clinical test for clinicians experienced in its use.


Asunto(s)
Pie/fisiología , Examen Físico/instrumentación , Supinación/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA