Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 126(1-4): 600-3, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17504749

RESUMEN

A compact and transportable water calorimeter has been developed and extensively tested in the intensive, collimated neutron field of the PTB. It has been applied for absorbed dose to water measurements in the neutron therapy field of the University of Essen, in the proton therapy fields of the HMI in Berlin and at the iThemba therapy centre near Cape Town, South Africa, as well as in the (12)C-beam of the therapy facility at GSI in Darmstadt, Germany. Absolute dosimetry with relative standard uncertainties of less than 1.8% was achieved in all radiation fields. The results obtained using the water calorimeter are compared with the ionisation chamber measurements in the same radiation fields. The heat defect for the water in the calorimeter core was determined separately in independent measurements by irradiation with different charged particle beams covering a wide range of linear energy transfer.


Asunto(s)
Calorimetría/instrumentación , Iones Pesados , Neutrones , Protones , Monitoreo de Radiación/instrumentación , Protección Radiológica/instrumentación , Agua/química , Diseño de Equipo , Análisis de Falla de Equipo , Exposición Profesional/análisis , Dosis de Radiación , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Phys Med Biol ; 51(15): 3667-82, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16861773

RESUMEN

Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.


Asunto(s)
Calorimetría/métodos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioisótopos de Cobalto , Iones Pesados , Humanos , Iones , Neutrones , Aceleradores de Partículas , Fotones , Protones , Dosis de Radiación , Reproducibilidad de los Resultados , Agua
3.
Med Phys ; 31(4): 832-8, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15125001

RESUMEN

Since 1978, the Universitätsklinikum in Essen operates a d(14 MeV) + Be fast neutron beam for patient treatment. Dosimetric studies were performed in a rectangular 40 x 40 mm2 neutron/photon field using a transportable water calorimeter, which had been developed at the Physikalisch-Technische Bundesanstalt. The water calorimeter allowed small dosimeters to be directly calibrated in units of absorbed dose-to-water in a cylindrical phantom of 50 mm in diameter. Also, the twin detector method was applied in order to determine the photon and the neutron dose separately. By making use of a calibrated ionization chamber, the absorbed dose-to-water calibration in the cylindrical water phantom was transferred to a water phantom, a cube 300 mm on a side. Experiments and Monte Carlo calculations covering the neutron producing target, the collimator and the influence of the water calorimeter on the spectral neutron fluence at the measurement position allow the relative uncertainty of the absorbed dose-to-water determination to be reduced to 2.6% (1 SD). This direct absorbed dose-to-water determination by calorimetry has shown that the treatment planning system underestimates the physical dose to tissue by 9%. For clinical purposes, the statement of the prescribed dose had to be increased by 9% in order that the absolute absorbed dose remains constant and that the same biological endpoints are reached.


Asunto(s)
Terapia por Captura de Neutrón de Boro/instrumentación , Calorimetría/instrumentación , Calorimetría/normas , Garantía de la Calidad de Atención de Salud/métodos , Radiometría/instrumentación , Radiometría/normas , Planificación de la Radioterapia Asistida por Computador/instrumentación , Terapia por Captura de Neutrón de Boro/métodos , Calibración/normas , Calorimetría/métodos , Análisis de Falla de Equipo/métodos , Análisis de Falla de Equipo/normas , Garantía de la Calidad de Atención de Salud/normas , Dosis de Radiación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA