Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1297175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022587

RESUMEN

Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Inmunomodulación , Biomarcadores , Microambiente Tumoral , Proteína Tirosina Fosfatasa no Receptora Tipo 22
2.
J Chem Inf Model ; 53(4): 898-906, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23451944

RESUMEN

The use of computer-aided structure-based drug design prior to synthesis has proven to be generally valuable in suggesting improved binding analogues of existing ligands. Here we describe the application of the program AutoDock to the design of a focused library that was used in the "click chemistry in-situ" generation of the most potent noncovalent inhibitor of the native enzyme acetylcholinesterase (AChE) yet developed (K(d) = ~100 fM). AutoDock version 3.0.5 has been widely distributed and successfully used to predict bound conformations of flexible ligands. Here, we also used a version of AutoDock which permits additional conformational flexibility in selected amino acid side chains of the target protein.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Sitios de Unión , Química Clic , Diseño Asistido por Computadora , Humanos , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
3.
Curr Top Med Chem ; 11(15): 1902-24, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21470172

RESUMEN

G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor.


Asunto(s)
Descubrimiento de Drogas/métodos , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo
4.
J Med Chem ; 50(25): 6291-4, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18020390

RESUMEN

We disclose the first selective, nonpeptidic, small-molecule somatostatin receptor subtype 5 (SST5R) antagonists that were identified by a chemogenomics approach based on the analysis of the homology of amino acids defining the putative consensus drug binding site of SST5R. With this strategy, opioid, histamine, dopamine, and serotonine receptors were identified as the closest neighbors of SST5R. The H1 antagonist astemizole was chosen as a seed structure and subsequently transformed into a SST5 receptor antagonist with nanomolar binding affinity devoid of the original target activity.


Asunto(s)
Benzoxazoles/síntesis química , Piperidinas/síntesis química , Receptores de Somatostatina/antagonistas & inhibidores , Secuencia de Aminoácidos , Astemizol/química , Astemizol/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Sitios de Unión , Antagonistas de los Receptores Histamínicos H1/química , Antagonistas de los Receptores Histamínicos H1/farmacología , Humanos , Datos de Secuencia Molecular , Piperidinas/química , Piperidinas/farmacología , Ensayo de Unión Radioligante , Receptores de Somatostatina/química , Receptores de Somatostatina/genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
5.
J Med Chem ; 50(25): 6295-8, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18020391

RESUMEN

The H1R antagonist astemizole was identified as a somatostatin 5 (SST5) receptor antagonist by a comparative sequence analysis of the consensus drug binding pocket of GPCRs. Subsequently, a similarity analysis of GPCR affinity profiles of astemizole versus a set of in-house GPCR-biased combinatorial libraries revealed new chemical entry points that led to a second lead series with nanomolar binding affinity.


Asunto(s)
Astemizol/química , Antagonistas de los Receptores Histamínicos H1/química , Piperidinas/síntesis química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Somatostatina/antagonistas & inhibidores , Compuestos de Espiro/síntesis química , Astemizol/farmacología , Sitios de Unión , Técnicas Químicas Combinatorias , Bases de Datos Factuales , Antagonistas de los Receptores Histamínicos H1/farmacología , Humanos , Piperidinas/química , Piperidinas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Somatostatina/química , Receptores de Somatostatina/genética , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Relación Estructura-Actividad
6.
Curr Opin Chem Biol ; 8(3): 287-96, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15183327

RESUMEN

This review addresses strategies for the generation of ligands for G-protein-coupled receptors outside classical high-throughput screening and literature based approaches. These range from the chemical intuition-based strategies of endogenous ligand elaboration and privileged structure decoration to the in silico approaches of virtual screening and de novo design. Examples are cited where supporting pharmacological data has been presented.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Receptores Acoplados a Proteínas G/metabolismo , Tiourea/análogos & derivados , Biología Computacional , Bases de Datos Factuales , Diseño de Fármacos , Imidazoles/química , Ligandos , Estructura Molecular , Piperidinas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Histamínicos H3/metabolismo , Tiourea/química
7.
Anal Chem ; 76(8): 2343-54, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15080747

RESUMEN

The fragmentation characteristics of native and permethylated oligosaccharides using a matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight tandem mass spectrometer are described. The use of two MALDI matrixes, alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), is shown to control the nature and extent of fragmentation observed in collision-induced dissociation experiments on synthetic oligosaccharides. CHCA promotes the occurrence of glycosidic cleavages, whereas DHB promotes a wide range of fragmentations. These latter fragmentations include glycosidic cleavages, cross-ring cleavages, and the formation of "internal" cleavage ions, which are derived from elimination of substituents from around the pyranose ring. This extensive fragmentation is shown to facilitate the detailed structural characterization of high-mannose and hybrid-type N-glycans purified from avidin. Importantly, the cross-ring fragments reveal linkage information, unambiguously define antennae substitutions, and differentiate isomeric glycoforms.


Asunto(s)
Polisacáridos/análisis , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Avidina/química , Secuencia de Carbohidratos , Espectrometría de Masas/métodos , Datos de Secuencia Molecular , Oligosacáridos/análisis , Oligosacáridos/química
10.
Angew Chem Int Ed Engl ; 37(24): 3423-3428, 1998 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-29711276

RESUMEN

Six building blocks, six reaction steps: The recently developed innovative methodology facilitated the convergent synthesis of the complex oligosaccharide core 1 (shown here with protecting groups) for the total synthesis of a glycosylphosphatidylinositol (GPI) anchor. The key factors are the tuning of the reactivity of the building blocks by using 1,2-diacetal protecting groups and the desymmetrization of glycerol and myo-inositol with a chiral bis(dihydropyran).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA