Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Allergy ; 5: 1385168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845678

RESUMEN

Background: Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective: It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods: Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results: Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions: Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.

2.
J Allergy Clin Immunol ; 141(5): 1711-1725.e9, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454836

RESUMEN

BACKGROUND: Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown. OBJECTIVE: The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy. METHODS: Mice heterozygous for the filaggrin (Flg)ft and Tmem79ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured. RESULTS: We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen. CONCLUSION: These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen.


Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Mutación/inmunología , Piel/inmunología , Alérgenos/inmunología , Anafilaxia/genética , Anafilaxia/inmunología , Animales , Antígenos/inmunología , Femenino , Proteínas Filagrina , Hipersensibilidad a los Alimentos/genética , Inmunoglobulina E/inmunología , Inflamación/genética , Inflamación/inmunología , Mediadores de Inflamación/inmunología , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA