Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Phys ; 44(3): 401-417, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29732506

RESUMEN

Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm-1 up to 7000 cm-1 in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm-1 and mainly determine the terahertz absorption. When cooled down to liquid helium temperatures, the bands in Shewanella oneidensis MR-1 and cytochrome c reveal a distinct fine structure. In all three materials, we identify the presence of liquid bound water in the form of librational and translational absorption bands at ≈ 200 and ≈ 600 cm-1, respectively. The sharp excitations seen above 1000 cm-1 are assigned to intramolecular vibrations.


Asunto(s)
Citocromos c/química , Matriz Extracelular/química , Shewanella/química , Espectroscopía de Terahertz/métodos , Agua/química , Animales , Bovinos , Albúmina Sérica Bovina/química
2.
Sci Rep ; 7(1): 15731, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29147016

RESUMEN

The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ 1(ν) whose magnitude exponentially decreases while cooling. With increasing frequency, dispersionless conductivity starts to reveal a power-law dependence σ 1(ν)∝ν s with s < 1 caused by hopping charge carriers. At low temperatures, such Universal Dielectric Response can cross over to another universal regime with nearly constant loss ε″∝σ1/ν = const. The powerful research potential based on such universalities is widely used in condensed matter physics. Here we study the broad-band (1-1012 Hz) dielectric response of Shewanella oneidensis MR-1 extracellular matrix, cytochrome C and serum albumin. Applying concepts of condensed matter physics, we identify transport mechanisms and a number of energy, time, frequency, spatial and temperature scales in these biological objects, which can provide us with deeper insight into the protein dynamics.


Asunto(s)
Albúminas/metabolismo , Citocromos c/metabolismo , Electricidad , Matriz Extracelular/metabolismo , Shewanella/metabolismo , Animales , Bovinos , Conductividad Eléctrica , Análisis Espectral , Temperatura , Agua/química
3.
Nanotechnology ; 28(44): 445204, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-28832014

RESUMEN

Broad-band (4-20 000 cm-1) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl3-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution. Partial localization of these carriers leads to a weak plasmon resonance around 100 cm-1. At the lowest frequencies, below 10 cm-1, a gap-like feature is detected whose origin is associated with the energy barrier experienced by the carriers at the intersections between SWCNTs. It is assumed that these three mechanisms are universal and determine the low-frequency terahertz-infrared electrodynamics of SWCNT wafer-scale films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA