Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Energy Mater ; 7(14): 5679-5690, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39055071

RESUMEN

Nickel phosphides are an emerging class of earth-abundant catalysts for hydrogen generation through water electrolysis. However, the hydrogen evolution reaction (HER) activity of Ni2P is lower than that of benchmark Pt group catalysts. To address this limitation, an integrated theoretical and experimental study was performed to enhance the HER activity and stability of hexagonal Ni2P through doping with synergistic transition metals. Among the nine dopants computationally studied, zinc emerged as an ideal candidate due to its ability to modulate the hydrogen binding free energy (ΔG H) closer to a thermoneutral value. Consequently, phase pure hexagonal Ni2-x Zn x P nanocrystals (NCs) with a solid spherical morphology, variable compositions (x = 0-17.14%), and size in the range of 6.8 ± 1.1-9.1 ± 1.1 nm were colloidally synthesized to investigate the HER activity and stability in alkaline electrolytes. As predicted, the HER performance was observed to be composition-dependent with Zn compositions (x) of 0.03, 0.07, and 0.15 demonstrating superior activity with overpotentials (η-10) of 188.67, 170.01, and 135.35 mV, respectively at a current density of -10 mA/cm2, in comparison to Ni2P NCs (216.2 ± 4.4 mV). Conversely, Ni2-x Zn x P NCs with x = 0.01, 0.38, 0.44, and 0.50 compositions showed a notable decrease in HER activity, with corresponding η-10 of 225.3 ± 3.2, 269.9 ± 4.3, 276.4 ± 3.7 and 263.9 ± 4.9 mV, respectively. The highest HER active catalyst was determined to be Ni1.85Zn0.15P NCs, featuring a Zn concentration of 5.24%, consistent with composition-dependent ΔG H calculations. The highest performing Ni1.85Zn0.15P NCs displayed a Heyrovsky HER mechanism, enhanced kinetics and electrochemically active surface area (ECSA), and superior corrosion tolerance with a negligible increase of η-10 after 10 h of continuous HER. This study provides critical insights into enhancing the performance of metal phosphides through doping-induced electronic structure variation, paving the way for the design of high-efficiency and durable nanostructures for heterogeneous catalytic studies.

2.
J Phys Chem C Nanomater Interfaces ; 128(25): 10483-10491, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38957369

RESUMEN

Dodecane-capped silicon nanocrystals (NCs) were synthesized by using a low-temperature (800-1100 °C) polymer variant of traditional hydrogen silsesquioxane thermal disproportionation. Highly crystalline Si NCs having tunable diameters (3.0-6.7 nm) and thus photoluminescence (PL) peaks (1.68-1.29 eV) were attained via changes in the maximum annealing temperature. Modifications in the NC band structure with diameter were explored by comparison of emission with absorption spectra obtained from diffuse reflectance spectroscopy. Large apparent energy shifts between onsets and PL were noted, being significant for smaller NCs (≤∼4.0 nm). This, along with comparatively "softer" onsets, is commensurate with density of states elongation around PL peaks associated with increasing confinement predicted for indirect semiconductor nanostructures. Tauc analyses of absorption additionally revealed three distinguishable optical transitions in all NCs: attributed to indirect Γ25'-Δ1 in lower energy ranges (likely the emission progenitor), indirect Γ25'-L1 overtaken by quasi-direct Γ-X wave function mixing for NC diameters ≤∼4.0 nm within the midenergy regime, and direct Γ25'-Γ15 transitions at energies nearing and above ∼3 eV.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37903332

RESUMEN

Assembly of nanoparticles (NPs) into functional macrostructures is imperative for the development of NP-based devices. However, existing methods employ insulating organic ligands, polymers, and biomolecules as mediators for the NP assembly, which are detrimental for charge transport and interparticle coupling that impede the efficient integration of low-dimensional properties. Herein, we report a methodology for the direct self-supported assembly of Ag/Pt/Pd alloy NPs into high surface area (119.1 ± 3.9 to 140.1 ± 5.7 m2/g), mesoporous (19.7 ± 6.2 to 23.0 ± 1.6 nm), and conducting nanostructures (aerogels) that show superior electrocatalytic activity and stability in methanol (MOR) and ethanol (EOR) oxidation reactions. Ultrasmall (3.9 ± 1.3 nm) and quasi-spherical Ag/Pt/Pd alloy NPs were synthesized via stepwise galvanic replacement reaction (GRR) of glutathione (GSH)-coated Ag NPs. As-synthesized NPs were transformed into free-standing alloy hydrogels via chemical oxidation of the GSH ligands. The composition of alloy aerogels was tuned by varying the oxidant/thiolate molar ratio of the precursor NP sol that prompts Ag dealloying with in situ generated HNO3, selectively enriching the Pt and Pd catalytic sites on the aerogel surface. The highest-performing alloy aerogel (Ag0.449Pt0.480Pd0.071) demonstrates excellent mass activity for methanol (3179.5 mA/mg) and ethanol (2444.5 mA/mg) electro-oxidation reactions, which are ∼4-5 times higher than those of commercial Pt/C and Pd/C electrocatalysts. The aerogel also maintained high alcohol oxidation activity for 17 h at a constant potential of -0.3 V in an alkaline medium. The synergistic effects of noble metal alloying, high surface area and mesoporosity, and the pristine active surface of aerogels provide efficient interaction of analytes with the nanostructure surface, facilitating both MOR and EOR activity and improving tolerance for poisonous byproducts, enabling the Ag/Pt/Pd alloy aerogel a promising (electro)catalyst for a number of new technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA