Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 30(6): 2198-210, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147547

RESUMEN

Three different subtypes of H(+)-dependent carriers (named VGLUT1-3) concentrate glutamate into synaptic vesicles before its exocytotic release. Neurons using other neurotransmitter than glutamate (such as cholinergic striatal interneurons and 5-HT neurons) express VGLUT3. It was recently reported that VGLUT3 increases acetylcholine vesicular filling, thereby, stimulating cholinergic transmission. This new regulatory mechanism is herein designated as vesicular-filling synergy (or vesicular synergy). In the present report, we found that deletion of VGLUT3 increased several anxiety-related behaviors in adult and in newborn mice as early as 8 d after birth. This precocious involvement of a vesicular glutamate transporter in anxiety led us to examine the underlying functional implications of VGLUT3 in 5-HT neurons. On one hand, VGLUT3 deletion caused a significant decrease of 5-HT(1A)-mediated neurotransmission in raphe nuclei. On the other hand, VGLUT3 positively modulated 5-HT transmission of a specific subset of 5-HT terminals from the hippocampus and the cerebral cortex. VGLUT3- and VMAT2-positive serotonergic fibers show little or no 5-HT reuptake transporter. These results unravel the existence of a novel subset of 5-HT terminals in limbic areas that might play a crucial role in anxiety-like behaviors. In summary, VGLUT3 accelerates 5-HT transmission at the level of specific 5-HT terminals and can exert an inhibitory control at the raphe level. Furthermore, our results suggest that the loss of VGLUT3 expression leads to anxiety-associated behaviors and should be considered as a potential new target for the treatment of this disorder.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/fisiología , Ansiedad/fisiopatología , Serotonina/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Ansiedad/metabolismo , Autorreceptores/fisiología , Corteza Cerebral/fisiopatología , Hipocampo/fisiopatología , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Núcleos del Rafe/fisiopatología , Receptor de Serotonina 5-HT1A/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transmisión Sináptica , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
2.
Nat Neurosci ; 11(3): 292-300, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18278042

RESUMEN

Three subtypes of vesicular transporters accumulate glutamate into synaptic vesicles to promote its vesicular release. One of the subtypes, VGLUT3, is expressed in neurons, including cholinergic striatal interneurons, that are known to release other classical transmitters. Here we showed that disruption of the Slc17a8 gene (also known as Vglut3) caused an unexpected hypocholinergic striatal phenotype. Vglut3(-/-) mice were more responsive to cocaine and less prone to haloperidol-induced catalepsy than wild-type littermates, and acetylcholine release was decreased in striatum slices lacking VGLUT3. These phenotypes were associated with a colocalization of VGLUT3 and the vesicular acetylcholine transporter (VAChT) in striatal synaptic vesicles and the loss of a synergistic effect of glutamate on vesicular acetylcholine uptake. We propose that this vesicular synergy between two transmitters is the result of the unbalanced bioenergetics of VAChT, which requires anion co-entry for continuing vesicular filling. Our study reveals a previously unknown effect of glutamate on cholinergic synapses with potential functional and pharmacological implications.


Asunto(s)
Acetilcolina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/genética , Acetilcolina/biosíntesis , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Antipsicóticos/farmacología , Inhibidores de Captación de Dopamina/farmacología , Regulación hacia Abajo/genética , Resistencia a Medicamentos/genética , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/genética , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
3.
J Neurochem ; 104(5): 1321-32, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18005000

RESUMEN

Retinoid-related orphan receptor alpha1 (RORalpha1) is a member of the nuclear receptor superfamily. It is highly expressed in CNS particularly in the cerebellum. Absence of this transcription factor in mice leads to several abnormalities, such as cerebellar atrophy linked to Purkinje cell death and impaired differentiation. A major role of RORalpha1 in neuronal survival is the control of reactive oxygen species homeostasis. RORalpha1 is a constitutively active receptor, but its regulation is yet not well known. Protein kinase C (PKC) also plays a major role in neuronal survival and differentiation, suggesting its possible involvement in post-translational modifications and regulation of RORalpha1 transcriptional activity. To test this hypothesis, we over-expressed the human isoform of this nuclear receptor in cortical neurons and COS-7 cells, which were then treated with different effectors acting on PKC activity. We showed for the first time that conventional PKCs induce phosphorylation and inhibition of RORalpha1 activity. We also investigated mitogen-activated protein kinase/extracellular signal-regulated kinase (1/2) involvement in this effect. Our results bring new insights into the control of RORalpha1 activity and highlight its importance in further investigations of the mechanisms involved in neuronal cell death in neurodegenerative diseases.


Asunto(s)
Proteína Quinasa C/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Transactivadores/metabolismo , Transcripción Genética/fisiología , Animales , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Humanos , Ratones , Neuronas/enzimología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Fosforilación , Proteína Quinasa C/genética , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal/genética , Transactivadores/genética
4.
Neuropharmacology ; 49(6): 901-11, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16182324

RESUMEN

Three subtypes of vesicular glutamate transporters, named VGLUT1-3, accumulate glutamate into synaptic vesicles. In this study, the post-natal expression of VGLUT3 was determined with specific probes and antiserums in the rat brain and compared with that of VGLUT1 and VGLUT2. The expression of VGLUT1 and VGLUT2 increases linearly during post-natal development. In contrast, VGLUT3 developmental pattern appears to have a more or less biphasic profile. A first peak of expression is centered around post-natal day 10 (P10) while the second one is reached in the adult brain. Between P1 and P15, VGLUT3 is observed in the frontal brain (striatum, accumbens, and hippocampus) and in the caudal brain (colliculi, pons and cerebellum). During a second phase extending from P15 to adulthood, the labeling of the caudal brain fades away. The adult pattern is reached at P21. We further analyzed the transient expression of VGLUT3 in the cerebellum and found it to correspond to a temporary expression in Purkinje cells. At P10 VGLUT3 immunoreactivity was present both in the soma and terminals of Purkinje cells (PC), where it colocalized with the vesicular inhibitory amino acid transporter (VIAAT). In agreement with data from the literature [Gillespie, D.C., Kim, G., Kandler, K., 2005. Inhibitory synapses in the developing auditory system are glutamatergic. Nat. Neurosci. 8, 332-338], our results suggest that during the first 2 weeks of post-natal life PC may have the potential to transiently release simultaneously GABA and glutamate.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Autorradiografía/métodos , Western Blotting/métodos , Cerebelo/citología , Técnica del Anticuerpo Fluorescente/métodos , Hibridación in Situ/métodos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/genética
5.
J Neurosci ; 22(13): 5442-51, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097496

RESUMEN

Two proteins previously known as Na(+)-dependent phosphate transporters have been identified recently as vesicular glutamate transporters (VGLUT1 and VGLUT2). Together, VGLUT1 and VGLUT2 are operating at most central glutamatergic synapses. In this study, we characterized a third vesicular glutamate transporter (VGLUT3), highly homologous to VGLUT1 and VGLUT2. Vesicles isolated from endocrine cells expressing recombinant VGLUT3 accumulated l-glutamate with bioenergetic and pharmacological characteristics similar, but not identical, to those displayed by the type-1 and type-2 isoforms. Interestingly, the distribution of VGLUT3 mRNA was restricted to a small number of neurons scattered in the striatum, hippocampus, cerebral cortex, and raphe nuclei, in contrast to VGLUT1 and VGLUT2 transcripts, which are massively expressed in cortical and deep structures of the brain, respectively. At the ultrastructural level, VGLUT3 immunoreactivity was concentrated over synaptic vesicle clusters present in nerve endings forming asymmetrical as well as symmetrical synapses. Finally, VGLUT3-positive neurons of the striatum and raphe nuclei were shown to coexpress acetylcholine and serotonin transporters, respectively. Our study reveals a novel class of glutamatergic nerve terminals and suggests that cholinergic striatal interneurons and serotoninergic neurons from the brainstem may store and release glutamate.


Asunto(s)
Acetilcolina/análisis , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Transporte de Membrana , Neuronas/metabolismo , Serotonina/análisis , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos/fisiología , Animales , Encéfalo/metabolismo , Proteínas Portadoras/genética , Línea Celular , Clonación Molecular , Ácido Glutámico/farmacología , Cinética , Datos de Secuencia Molecular , Neuronas/química , Neuronas/efectos de los fármacos , ARN Mensajero/biosíntesis , Núcleos del Rafe , Ratas , Alineación de Secuencia , Vesículas Sinápticas/química , Distribución Tisular , Transcripción Genética , Proteína 1 de Transporte Vesicular de Glutamato , Proteína 2 de Transporte Vesicular de Glutamato , Proteínas de Transporte Vesicular de Glutamato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA