Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Am J Med Genet A ; : e63832, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126172

RESUMEN

BACKGROUND: Ectodermal dysplasias (EDs) are a heterogeneous group of genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives, including hair, teeth, nails, and certain glands. There are currently 49 recognized EDs with molecularly confirmed etiology. The EDs are very rare disorders, individually and in aggregate. Very little is published regarding the prevalence of these rare disorders. As a result of the genomics revolution, rare diseases have emerged as a global health priority. The various disabilities arising from rare disorders, as well as diagnostic and treatment uncertainty, have been demonstrated to have detrimental effects on the health, psychosocial, and economic aspects of families affected by rare disorders. Contemporary research methodologies and databases can address what have been historic challenges encountered when conducting research on rare diseases. OBJECTIVE: In this study, we aim to ascertain period prevalence rates for several of the more common ectodermal dysplasia syndromes, by querying a large multicenter database of electronic health records, Oracle Real-World Data. METHODS: For each of the included ectodermal dysplasia syndromes a clinical definition was developed by a committee of international experts with interests in EDs. The clinical definitions were based upon a combination of clinical features and designated by ICD-9 and ICD-10 codes. The January 2023 version of the Oracle Real-World Data database was queried for medical records that coincided with the clinical definitions. For our study, there were 64,523,460 individual medical records queried. RESULTS: Period prevalence rates were calculated for the following ED disorders: hypohidrotic ectodermal dysplasia, found to be 2.99 per 100,000; ectodermal dysplasia and immunodeficiency 1, 0.23 per 100,000; Clouston syndrome, 0.15 per 100,000; ectrodactyly ectodermal dysplasia and cleft lip/palate syndrome, 0.61 per 100,000; ankyloblepharon-ectodermal defects-cleft lip/palate syndrome, 0.36 per 100,000; focal dermal hypoplasia, 0.10 per 100,000; and incontinentia pigmenti, 0.88 per 100,000. CONCLUSION: This study established estimated period prevalence rates for several of the ectodermal dysplasia syndromes, and it demonstrated the feasibility of utilizing large multicenter databases of electronic health records, such as Oracle Real World Data.

2.
Am J Med Genet A ; : e63854, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166407

RESUMEN

We report three unrelated individuals with atypical clinical findings for cardio-facio-cutaneous (CFC) syndrome, all of whom have the same novel, heterozygous de novo p.H119Y (c.355 C>T) transition variant in MAP2K1, identified by exome sequencing. MAP2K1 encodes MEK1, dual specificity mitogen-activated protein kinase kinase 1, and is one of four genes in the canonical RAS/MAPK signal transduction pathway associated with CFC syndrome. The p.H119Y variant is a non-conservative amino acid substitution that is predicted to impact the tertiary protein structure, and it occurs at a position in the protein kinase domain of MAP2K1 that is highly conserved across species. The clinical findings in these three individuals include facial features that are nonclassical for CFC syndrome, extremely poor weight gain, absence of congenital cardiac defects or cardiomyopathy, normal cognition or only mild intellectual disabilities, normal hair, mild skin abnormalities, and consistent behavioral features of anxiety, photophobia, and sensory hypersensitivities. These individuals expand the phenotypic spectrum of MAP2K1-related RASopathy.

3.
Mol Genet Metab ; 143(1-2): 108541, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39059270

RESUMEN

Over fifty years have passed since the last large scale longitudinal study of individuals with PAH deficiency in the U.S. Since then, there have been significant changes in terms of treatment recommendations as well as treatment options. The Phenylalanine Families and Researchers Exploring Evidence (PHEFREE) Consortium was recently established to collect a more up-to-date and extensive longitudinal natural history in individuals with phenylketonuria across the lifespan. In the present paper, we describe the structure and methods of the PHEFREE longitudinal study protocol and report cross-sectional data from an initial sample of 73 individuals (5 months to 54 years of age) with PAH deficiency who have enrolled. Looking forward, the study holds the promise for advancing the field on several fronts including the validation of novel neurocognitive tools for assessment in individuals with PKU as well as evaluation of the long-term effects of changes in metabolic control (e.g., effects of Phe-lowering therapies) on outcome.

4.
Am J Med Genet A ; : e63815, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031464

RESUMEN

Cantu syndrome (CS) (OMIM #239850) is an autosomal dominant multiorgan system condition, associated with a characteristic facial phenotype, hypertrichosis, and multiple cardiovascular complications. CS is caused by gain-of-function (GOF) variants in KCNJ8 or ABCC9 that encode pore-forming Kir6.1 and regulatory SUR2 subunits of ATP-sensitive potassium (KATP) channels. A novel heterozygous ABCC9 variant, c.2440G>T; p.Gly814Trp, was identified in three individuals from a four generation Greek family. The membrane potential in cells stably expressing hKir6.1 and hSUR2B with p.Gly814Trp was hyperpolarized compared to cells expressing WT channels, and inside-out patch-clamp assays of KATP channels formed with hSUR2B p.Gly814Trp demonstrated a decreased sensitivity to ATP inhibition, confirming a relatively mild GOF effect of this variant. The specific location of the variant reveals an unrecognized functional role of the first glycine in the signature motif of the nucleotide binding domains in ATP-binding cassette (ABC) protein ion channels.

5.
Function (Oxf) ; 5(5)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984978

RESUMEN

Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .


Asunto(s)
Hipertricosis , Células Madre Pluripotentes Inducidas , Canales KATP , Músculo Liso Vascular , Miocitos del Músculo Liso , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Liso Vascular/metabolismo , Hipertricosis/genética , Hipertricosis/metabolismo , Hipertricosis/fisiopatología , Hipertricosis/patología , Animales , Ratones , Miocitos del Músculo Liso/metabolismo , Canales KATP/genética , Canales KATP/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Osteocondrodisplasias/fisiopatología , Mutación , Diferenciación Celular/genética , Técnicas de Placa-Clamp , Cardiomegalia , Receptores de Sulfonilureas
6.
Genet Med ; 26(9): 101174, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38847193

RESUMEN

PURPOSE: We identified 2 individuals with de novo variants in SREBF2 that disrupt a conserved site 1 protease (S1P) cleavage motif required for processing SREBP2 into its mature transcription factor. These individuals exhibit complex phenotypic manifestations that partially overlap with sterol regulatory element binding proteins (SREBP) pathway-related disease phenotypes, but SREBF2-related disease has not been previously reported. Thus, we set out to assess the effects of SREBF2 variants on SREBP pathway activation. METHODS: We undertook ultrastructure and gene expression analyses using fibroblasts from an affected individual and utilized a fly model of lipid droplet (LD) formation to investigate the consequences of SREBF2 variants on SREBP pathway function. RESULTS: We observed reduced LD formation, endoplasmic reticulum expansion, accumulation of aberrant lysosomes, and deficits in SREBP2 target gene expression in fibroblasts from an affected individual, indicating that the SREBF2 variant inhibits SREBP pathway activation. Using our fly model, we discovered that SREBF2 variants fail to induce LD production and act in a dominant-negative manner, which can be rescued by overexpression of S1P. CONCLUSION: Taken together, these data reveal a mechanism by which SREBF2 pathogenic variants that disrupt the S1P cleavage motif cause disease via dominant-negative antagonism of S1P, limiting the cleavage of S1P targets, including SREBP1 and SREBP2.


Asunto(s)
Fibroblastos , Mutación Missense , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Humanos , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Fibroblastos/metabolismo , Mutación Missense/genética , Masculino , Femenino , Gotas Lipídicas/metabolismo , Fenotipo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Serina Endopeptidasas , Proproteína Convertasas
8.
Am J Hum Genet ; 111(4): 729-741, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579670

RESUMEN

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Asunto(s)
Epilepsia Generalizada , Glutamato-Amoníaco Ligasa , Glutamina , Animales , Humanos , Ratones , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
9.
Am J Hum Genet ; 111(4): 778-790, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38531365

RESUMEN

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Exones , Discapacidad Intelectual/genética , Mamíferos/genética , Hipotonía Muscular/genética , Anomalías Musculoesqueléticas/genética , Neuroblastoma/genética , Trastornos del Neurodesarrollo/genética , Especies Reactivas de Oxígeno
10.
JIMD Rep ; 64(6): 424-433, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37927489

RESUMEN

The phosphatidylinositol glycan anchor biosynthesis class O protein (PIGO) enzyme is an important step in the biosynthesis of glycosylphosphatidylinositol (GPI), which is essential for the membrane anchoring of several proteins. Bi-allelic pathogenic variants in PIGO lead to a congenital disorder of glycosylation (CDG) characterized by global developmental delay, an increase in serum alkaline phosphatase levels, congenital anomalies including anorectal, genitourinary, and limb malformations in most patients; this phenotype has been alternately called "Mabry syndrome" or "hyperphosphatasia with impaired intellectual development syndrome 2." We report a 22-month-old female with PIGO deficiency caused by novel PIGO variants. In addition to the Mabry syndrome phenotype, our patient's clinical picture was complicated by intermittent hypoglycemia with signs of functional hyperinsulinism, severe secretory diarrhea, and osteopenia with a pathological fracture, thus, potentially expanding the known phenotype of this disorder, although more studies are necessary to confirm these associations. We also provide an updated review of the literature, and propose unifying the nomenclature of PIGO deficiency as "PIGO-CDG," which reflects its pathophysiology and position in the broad scope of metabolic disorders and congenital disorders of glycosylation.

11.
Nat Metab ; 5(10): 1685-1690, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37770764

RESUMEN

Despite available treatment options, many patients with phenylketonuria (PKU) cannot achieve target plasma phenylalanine (Phe) levels1. We previously modified Escherichia coli Nissle 1917 to metabolize Phe in the gut after oral administration (SYNB1618) and designed a second strain (SYNB1934) with enhanced activity of phenylalanine ammonia lyase2,3. In a 14-day open-label dose-escalation study (Synpheny-1, NCT04534842 ), we test a primary endpoint of change from baseline in labeled Phe (D5-Phe AUC0-24; D5-Phe area under the curve (AUC) over 24 hours after D5-Phe administration) in plasma after D5-Phe challenge in adult participants with screening Phe of greater than 600 µM. Secondary endpoints were the change from baseline in fasting plasma Phe and the incidence of treatment-emergent adverse events. A total of 20 participants (ten male and ten female) were enrolled and 15 completed the study treatment. Here, we show that both strains lower Phe levels in participants with PKU: D5-Phe AUC0-24 was reduced by 43% from baseline with SYNB1934 and by 34% from baseline with SYNB1618. SYNB1934 led to a decrease in fasting plasma Phe of 40% (95% CI, -52, -24). There were no serious adverse events or infections. Four participants discontinued because of adverse events, and one withdrew during the baseline period. We show that synthetic biotics can metabolize Phe in the gut, lower post-prandial plasma Phe levels and lower fasting plasma Phe in patients with PKU.


Asunto(s)
Fenilalanina , Fenilcetonurias , Adulto , Humanos , Masculino , Femenino , Fenilalanina/uso terapéutico , Fenilcetonurias/tratamiento farmacológico , Fenilanina Amoníaco-Liasa/uso terapéutico , Administración Oral , Escherichia coli
12.
JIMD Rep ; 64(5): 367-374, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701333

RESUMEN

Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 µmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.

13.
J Pharmacol Exp Ther ; 386(3): 298-309, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527933

RESUMEN

Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.


Asunto(s)
Gliburida , Canales KATP , Humanos , Gliburida/farmacología , Gliburida/metabolismo , Pinacidilo/farmacología , Células HEK293 , Canales KATP/genética , Canales KATP/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Mutación , Cardiomegalia/genética , Adenosina Trifosfato/metabolismo
14.
Genet Med ; 25(11): 100938, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37454282

RESUMEN

PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.


Asunto(s)
ARN de Transferencia , Pez Cebra , Animales , Humanos , Mutación , Pez Cebra/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ligasas , Fenotipo
15.
JIMD Rep ; 64(4): 261-264, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404675

RESUMEN

Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is an autosomal recessive long chain fatty acid ß-oxidation disorder with a variable clinical spectrum, ranging from an acute neonatal presentation with cardiac and hepatic failure to childhood or adult onset of symptoms with hepatomegaly or rhabdomyolysis provoked by illness or exertion. Neonatal cardiac arrest or sudden unexpected death can be the presenting phenotype in some patients, emphasizing the importance of early clinical suspicion and intervention. We report a patient who had a cardiac arrest and died at one day of age. Following her death, the newborn screen reported biochemical evidence of VLCAD deficiency, which was confirmed with pathologic findings at autopsy and by molecular genetic testing.

16.
bioRxiv ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37425756

RESUMEN

Objective: Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with distinct hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Approach and Results: Whole-cell voltage-clamp of isolated aortic and mesenteric VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no difference in voltage-gated K + (K v ) or Ca 2+ currents. K v and Ca 2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. Pinacidil-sensitive K ATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, and were considerably larger in CS hiPSC-VSMCs. Consistent with lack of any compensatory modulation of other currents, this resulted in membrane hyperpolarization, explaining the hypomyotonic basis of CS vasculopathy. Increased compliance and dilation in isolated CS mouse aortae, was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular K ATP GoF. Conclusions: The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. The results further indicate that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by K ATP overactivity within VSMCs.

17.
Exp Dermatol ; 32(9): 1575-1581, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37432020

RESUMEN

The goal of this study was to investigate the molecular mechanisms responsible for the formation of skin erosions in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). This ectodermal dysplasia is caused by mutations in the TP63 gene, which encodes several transcription factors that control epidermal development and homeostasis. We generated induced pluripotent stem cells (iPSC) from AEC patients and corrected the TP63 mutations using genome editing tools. Three pairs of the resulting conisogenic iPSC lines were differentiated into keratinocytes (iPSC-K). We identified a significant downregulation of key components of hemidesmosomes and focal adhesions in AEC iPSC-K compared to their gene-corrected counterparts. Further, we demonstrated reduced AEC iPSC-K migration, suggesting the possibility that a process critical for cutaneous wound healing might be impaired in AEC patients. Next, we generated chimeric mice expressing a TP63-AEC transgene and confirmed a downregulation of these genes in transgene-expressing cells in vivo. Finally, we also observed these abnormalities in AEC patient skin. Our findings suggest that integrin defects in AEC patients might weaken the adhesion of keratinocytes to the basement membrane. We propose that reduced expression of extracellular matrix adhesion receptors, potentially in conjunction with previously identified desmosomal protein defects, contribute to skin erosions in AEC.


Asunto(s)
Labio Leporino , Fisura del Paladar , Displasia Ectodérmica , Animales , Ratones , Labio Leporino/genética , Fisura del Paladar/genética , Displasia Ectodérmica/genética , Queratinocitos , Mutación , Proteínas Supresoras de Tumor/genética , Células Madre Pluripotentes Inducidas , Ratones Transgénicos
18.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183572

RESUMEN

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adulto , Niño , Femenino , Humanos , Lactante , Masculino , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Fosfatasa 2C/genética , Estudios Retrospectivos , Vómitos , Preescolar , Adolescente , Adulto Joven , Persona de Mediana Edad
19.
Sci Adv ; 9(17): eade0631, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126546

RESUMEN

We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.


Asunto(s)
Transducción de Señal , Pez Cebra , Animales , Humanos , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular
20.
bioRxiv ; 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37205354

RESUMEN

The goal of this study was to investigate the molecular mechanisms responsible for the formation of skin erosions in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). This ectodermal dysplasia is caused by mutations in the TP63 gene, which encodes several transcription factors that control epidermal development and homeostasis. We generated induced pluripotent stem cells (iPSC) from AEC patients and corrected the TP63 mutations using genome editing tools. Three pairs of the resulting conisogenic iPSC lines were differentiated into keratinocytes (iPSC-K). We identified a significant downregulation of key components of hemidesmosomes and focal adhesions in AEC iPSC-K compared to their gene-corrected counterparts. Further, we demonstrated reduced iPSC-K migration, suggesting the possibility that a process critical for cutaneous wound healing might be impaired in AEC patients. Next, we generated chimeric mice expressing a TP63-AEC transgene and confirmed a downregulation of these genes in transgene-expressing cells in vivo. Finally, we also observed these abnormalities in AEC patient skin. Our findings suggest that integrin defects in AEC patients might weaken the adhesion of keratinocytes to the basement membrane. We propose that reduced expression of extracellular matrix adhesion receptors, potentially in conjunction with previously identified desmosomal protein defects, contribute to skin erosions in AEC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA