Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8429, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114502

RESUMEN

Inoviruses are filamentous phages infecting numerous prokaryotic phyla. Inoviruses can self-assemble into mesoscale structures with liquid-crystalline order, termed tactoids, which protect bacterial cells in Pseudomonas aeruginosa biofilms from antibiotics. Here, we investigate the structural, biophysical, and protective properties of tactoids formed by the P. aeruginosa phage Pf4 and Escherichia coli phage fd. A cryo-EM structure of the capsid from fd revealed distinct biochemical properties compared to Pf4. Fd and Pf4 formed tactoids with different morphologies that arise from differing phage geometries and packing densities, which in turn gave rise to different tactoid emergent properties. Finally, we showed that tactoids formed by either phage protect rod-shaped bacteria from antibiotic treatment, and that direct association with a tactoid is required for protection, demonstrating the formation of a diffusion barrier by the tactoid. This study provides insights into how filamentous molecules protect bacteria from extraneous substances in biofilms and in host-associated infections.


Asunto(s)
Bacteriófagos , Inovirus , Fagos Pseudomonas , Antibacterianos/farmacología , Pseudomonas aeruginosa , Fagos Pseudomonas/genética , Inovirus/genética , Bacterias , Biopelículas
2.
Biochem Soc Trans ; 51(4): 1701-1711, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37560901

RESUMEN

Developments in cryo-electron microscopy (cryo-EM) have been interwoven with the study of viruses ever since its first applications to biological systems. Following the success of single particle cryo-EM in the last decade, cryo-electron tomography (cryo-ET) is now rapidly maturing as a technology and catalysing great advancement in structural virology as its application broadens. In this review, we provide an overview of the use of cryo-ET to study viral infection biology, discussing the key workflows and strategies used in the field. We highlight the vast body of studies performed on purified viruses and virus-like particles (VLPs), as well as discussing how cryo-ET can characterise host-virus interactions and membrane fusion events. We further discuss the importance of in situ cellular imaging in revealing previously unattainable details of infection and highlight the need for validation of high-resolution findings from purified ex situ systems. We give perspectives for future developments to achieve the full potential of cryo-ET to characterise the molecular processes of viral infection.


Asunto(s)
Virosis , Virus , Humanos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA