Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Malar J ; 19(1): 152, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295590

RESUMEN

BACKGROUND: KwaZulu-Natal, one of South Africa's three malaria endemic provinces, is nearing malaria elimination, reporting fewer than 100 locally-acquired cases annually since 2010. Despite sustained implementation of essential interventions, including annual indoor residual spraying, prompt case detection using malaria rapid diagnostics tests and treatment with effective artemisinin-based combination therapy, low-level focal transmission persists in the province. This malaria prevalence and entomological survey was therefore undertaken to identify the drivers of this residual transmission. METHODS: Malaria prevalence as well as malaria knowledge, attitudes and practices among community members and mobile migrant populations within uMkhanyakude district, KwaZulu-Natal were assessed during a community-based malaria prevalence survey. All consenting participants were tested for malaria by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Finger-prick filter-paper blood spots were also collected from all participants for downstream parasite genotyping analysis. Entomological investigations were conducted around the surveyed households, with potential breeding sites geolocated and larvae collected for species identification and insecticide susceptibility testing. A random selection of households were assessed for indoor residual spray quality by cone bioassay. RESULTS: A low malaria prevalence was confirmed in the study area, with only 2% (67/2979) of the participants found to be malaria positive by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Malaria prevalence however differed markedly between the border market and community (p < 0001), with the majority of the detected malaria carriers (65/67) identified as asymptomatic Mozambican nationals transiting through the informal border market from Mozambique to economic hubs within South Africa. Genomic analysis of the malaria isolates revealed a high degree of heterozygosity and limited genetic relatedness between the isolates supporting the hypothesis of limited local malaria transmission within the province. New potential vector breeding sites, potential vector populations with reduced insecticide susceptibility and areas with sub-optimal vector intervention coverage were identified during the entomological investigations. CONCLUSION: If KwaZulu-Natal is to successfully halt local malaria transmission and prevent the re-introduction of malaria, greater efforts need to be placed on detecting and treating malaria carriers at both formal and informal border crossings with transmission blocking anti-malarials, while ensuring optimal coverage of vector control interventions is achieved.


Asunto(s)
Enfermedades Transmisibles Importadas/epidemiología , Enfermedades Transmisibles Importadas/transmisión , Malaria/epidemiología , Malaria/transmisión , Infecciones Asintomáticas/epidemiología , Erradicación de la Enfermedad , Enfermedades Endémicas/estadística & datos numéricos , Humanos , Prevalencia , Sudáfrica/epidemiología
2.
Malar J ; 18(1): 108, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30935418

RESUMEN

BACKGROUND: The South African province of KwaZulu-Natal is rapidly approaching elimination status for malaria with a steady decline in local cases. With the possibility of achieving elimination in reach, the KZN malaria control programme conducted a critical evaluation of its practices and protocols to identify potential challenges and priorities to achieving elimination. Three fundamental questions were addressed: (1) How close is KZN to malaria elimination; (2) Are all systems required to pursue subnational verification of elimination in place; and (3) What priority interventions must be implemented to reduce local cases to zero? METHODS: Based on the 2017 World Health Organization Framework for Elimination, twenty-eight requirements were identified, from which forty-nine indicators to grade elimination progress were further stratified. Malaria data were extracted from the surveillance system and other programme data sources to calculate each indicator and semi-quantitatively rate performance into one of four categories to assess the provinces elimination preparedness. RESULTS: Across the key components a number of gaps were elucidated based on specific indicators. Out of the 49 indicators across these key components, 10 indicators (20%) were rated as fully implemented/well implemented, 11 indicators (22%) were rated as partially done/somewhat implemented/activity needs to be strengthened, and 12 indicators (24%) were rated as not done at all/not implemented/poor performance. Sixteen indicators (33%) could not be calculated due to lack of data or missing data. CONCLUSIONS: The critical self-evaluation of programme performance has allowed the KZN malaria programme to plan to address key issues moving forward. Based on the findings from the checklist review process, planning exercises were conducted to improve lower-rating indicators, and a monitoring and evaluation framework was created to assess progress on a monthly basis. This is scheduled to be reviewed annually to ensure continued progress toward meeting the elimination goal. In addition, multiple dissemination meetings were held with both provincial senior management and operational staff to ensure ownership of the checklist and its action plan at all levels.


Asunto(s)
Erradicación de la Enfermedad/organización & administración , Transmisión de Enfermedad Infecciosa/prevención & control , Investigación sobre Servicios de Salud , Malaria/epidemiología , Malaria/prevención & control , Humanos , Sudáfrica
3.
Malar J ; 18(1): 45, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30791909

RESUMEN

BACKGROUND: As surveillance is a key strategy for malaria elimination in South Africa, ensuring strong surveillance systems is a National Department of Health priority. Historically, real time tracking of case trends and reporting within 24 h-a requirement in South Africa's National surveillance guidelines-has not been possible. To enhance surveillance and response efficiency, a mobile surveillance tool, MalariaConnect, was developed using Unstructured Supplementary Service Data (USSD) technology. It was rolled out in health facilities in malaria endemic areas of South Africa to provide 24-h reporting of malaria cases. METHODS: To evaluate the efficiency of the mobile tool to detect an outbreak data were extracted from the paper based and MalariaConnect reporting systems in Bushbuckridge from 1 January to 18 June 2017. These data were subject to time series analyses to determine if MalariaConnect provided sufficient data reliably to detect increasing case trends reported through the paper system. The Chi squared test was used to determine goodness of fit between the following indicator data generated using MalariaConnect and paper reporting systems: timeliness, completeness, and precision. RESULTS: MalariaConnect adequately tracked case trends reported through the paper system. Timeliness of reporting increased significantly using MalariaConnect with 0.63 days to notification compared to 5.65 days using the paper-system (p < 0.05). The completeness of reporting was significantly higher for the paper system (100% completion; p < 0.05), compared to confirmed MalariaConnect cases (61%). There was a moderate association between data precision and the reporting system (p < 0.05). MalariaConnect provided an effective way of reliably and accurately identifying the onset of the malaria outbreak in Bushbuckridge. CONCLUSION: Timeliness significantly improved using MalariaConnect and in a malaria elimination setting, can be used to markedly improve case investigation and response activities within the recommended 72-h period. Although data completeness and precision were lower compared to paper reporting, MalariaConnect data can be used to trigger outbreak responses.


Asunto(s)
Notificación de Enfermedades/métodos , Brotes de Enfermedades , Monitoreo Epidemiológico , Malaria/epidemiología , Humanos , Sudáfrica/epidemiología , Análisis Espacio-Temporal , Factores de Tiempo
4.
Malar J ; 17(1): 308, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139370

RESUMEN

BACKGROUND: As South Africa strives to achieve malaria elimination by 2018 (zero local cases) the country needs to strengthen its disease surveillance system by reducing the timeliness from case diagnosis to notification of key stakeholders in the malaria programme. This study evaluated the feasibility of a 24-h mobile reporting system, designed for speeding up malaria notifications, from primary healthcare facilities to district, provincial, and national malaria programmes in South Africa. METHODS: A prospective descriptive study utilizing primary data collected from structured interviews with healthcare workers in public healthcare facilities was used to compare two reporting systems (24-h mobile reporting system and the paper-based reporting system) in malaria endemic provinces (Limpopo, Mpumalanga and KwaZulu-Natal). Data on completeness of reporting, simplicity, user acceptability and technical limitations were analysed. A Wilcoxon signed-rank test was used to compare the time difference between the two reporting systems. RESULTS: There were 1819 cases of malaria reported through the paper-based system, and 63.2% (1149) of those cases were also reported through the 24-h mobile reporting system. Out of the 272 healthcare workers who were interviewed, 40% (108) had seen malaria patients and reported a case through the 24-h mobile reporting system. The median time for cases to be reported through the 24-h mobile reporting system was significantly shorter at < 1 day (range < 1 to 31 days) compared to the paper-based system at 3 days (range 2 to > 39 days) (p < 0.001). It was found that 26% (28) were able to use the system and send reports within 2 min, 94% (256) were willing to continue to use the system. Of the 108 healthcare workers who reported a case, 18.5% (20) experienced network challenges. CONCLUSIONS: The 24-h mobile reporting system is user friendly and trained healthcare workers are willing to use the system, despite network limitations. The 24-h mobile reporting system reduces the time required for diagnosed cases to be notified by the health care facility to district, provincial and national levels. The 24-h mobile reporting system is a feasible option for malaria notification in South Africa and will assist with early detection of malaria outbreaks.


Asunto(s)
Notificación de Enfermedades/métodos , Malaria/prevención & control , Vigilancia de la Población/métodos , Instituciones de Atención Ambulatoria , Personal de Salud , Humanos , Estudios Prospectivos , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA