Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 48676-48684, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190646

RESUMEN

The development of Perovskite Solar Cells (PSCs) on flexible substrates marks a significant advancement in thin-film photovoltaic technology. However, current state-of-the-art research predominantly utilizes Poly(ethylene terephthalate) (PET) substrate, which limits the deployment to less challenging environments. To address this limitation, we explore the fabrication of inverted PSCs on colorless polyimide (CPI) substrates that can withstand harsh environmental conditions. We employed a sequential sputtering technique to deposit indium tin oxide (bottom electrode) and nickel oxide (hole transport layer) as a base stack for the perovskite. This base layer was further enhanced by incorporating MeO-2PACz into the hole transport bilayer, significantly improving the NiOx interface, and thereby enhancing the efficiency of the devices. The PSCs fabricated on CPI demonstrated a power conversion efficiency (PCE) of 15.52% and a remarkable power-to-weight ratio (PWR) of 4.39 W/g, which is five times higher than that of devices on PET (0.87 W/g). Moreover, the active stack developed in this study can be used on any transparent substrate, showing its broader application potential.

2.
Materials (Basel) ; 16(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36984068

RESUMEN

Graphene nanoplatelets (GNPs) were prepared using the electrolytic exfoliation method on graphite foil in an ammonium sulfate solution. A series of experiments were conducted in order to optimize the production of the flakes by varying the pH of the solution, applied voltage and current, duration of electrolysis, temperature in the electrolytic system, and type and duration of the ultrasound interaction. The quality of the produced graphene nanoplatelets was analyzed using X-ray diffraction, Raman and IR spectroscopy, and TEM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA