Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 14(1): 3672, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37339989

RESUMEN

High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.


Asunto(s)
Caenorhabditis elegans , Neuronas , Animales , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Transcriptoma
2.
Cell Rep ; 41(10): 111768, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476860

RESUMEN

The thalamus is the principal information hub of the vertebrate brain, with essential roles in sensory and motor information processing, attention, and memory. The complex array of thalamic nuclei develops from a restricted pool of neural progenitors. We apply longitudinal single-cell RNA sequencing and regional abrogation of Sonic hedgehog (Shh) to map the developmental trajectories of thalamic progenitors, intermediate progenitors, and post-mitotic neurons as they coalesce into distinct thalamic nuclei. These data reveal that the complex architecture of the thalamus is established early during embryonic brain development through the coordinated action of four cell differentiation lineages derived from Shh-dependent and -independent progenitors. We systematically characterize the gene expression programs that define these thalamic lineages across time and demonstrate how their disruption upon Shh depletion causes pronounced locomotor impairment resembling infantile Parkinson's disease. These results reveal key principles of thalamic development and provide mechanistic insights into neurodevelopmental disorders resulting from thalamic dysfunction.


Asunto(s)
Tálamo , Tálamo/citología
3.
Sci Adv ; 8(23): eabj2820, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675405

RESUMEN

A notable number of acute lymphoblastic leukemia (ALL) patients develop CD19-positive relapse within 1 year after receiving chimeric antigen receptor (CAR) T cell therapy. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes. Here, we present 101,326 single-cell transcriptomes and surface protein landscape from the infusion products of 12 ALL patients. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of T helper 2 function was associated with CD19-positive relapse compared with durable responders (remission, >54 months). Proteomic data revealed that the frequency of early memory T cells, rather than activation or coinhibitory signatures, could distinguish the relapse. These findings were corroborated by independent functional profiling of 49 patients, and an integrative model was developed to predict the response. Our data unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long-term remission.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteómica , Receptores Quiméricos de Antígenos/metabolismo , Recurrencia
4.
Artículo en Inglés | MEDLINE | ID: mdl-33031032

RESUMEN

We consider the problem of finding a consensus tumor evolution tree from a set of conflicting input trees. In contrast to traditional phylogenetic trees, the tumor trees we consider do not have the same set of labels applied to the leaves of each tree. We describe several distance measures between these tumor trees. Our GraPhyC algorithm solves the consensus problem using a weighted directed graph where vertices are sets of mutations and edges are weighted based on the number of times a parental relationship is observed between their constituent mutations in the input trees. We find a minimum weight spanning arborescence in this graph and prove that it minimizes the total distance to all input trees for one of our distance measures. We also describe several extensions of our GraPhyC approach. On simulated data we show that GraPhyC outperforms a baseline method and demonstrate that GraPhyC can be an effective means of computing centroids in k-medians clustering. We analyze two real sequencing datasets and find that GraPhyC is able to identify a tree not included in the set of input trees, but that contains characteristics supported by other reported evolutionary reconstructions of this tumor.


Asunto(s)
Algoritmos , Neoplasias , Análisis por Conglomerados , Consenso , Humanos , Neoplasias/genética , Filogenia
5.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33674303

RESUMEN

Highly multiplexed immunohistochemistry (mIHC) enables the staining and quantification of dozens of antigens in a tissue section with single-cell resolution. However, annotating cell populations that differ little in the profiled antigens or for which the antibody panel does not include specific markers is challenging. To overcome this obstacle, we have developed an approach for enriching mIHC images with single-cell RNA sequencing data, building upon recent experimental procedures for augmenting single-cell transcriptomes with concurrent antigen measurements. Spatially-resolved Transcriptomics via Epitope Anchoring (STvEA) performs transcriptome-guided annotation of highly multiplexed cytometry datasets. It increases the level of detail in histological analyses by enabling the systematic annotation of nuanced cell populations, spatial patterns of transcription, and interactions between cell types. We demonstrate the utility of STvEA by uncovering the architecture of poorly characterized cell types in the murine spleen using published cytometry and mIHC data of this organ.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Inmunohistoquímica , Ratones , Coloración y Etiquetado , Secuenciación del Exoma
6.
Nat Methods ; 17(10): 991-1001, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32868927

RESUMEN

Single-cell RNA sequencing offers snapshots of whole transcriptomes but obscures the temporal RNA dynamics. Here we present single-cell metabolically labeled new RNA tagging sequencing (scNT-seq), a method for massively parallel analysis of newly transcribed and pre-existing mRNAs from the same cell. This droplet microfluidics-based method enables high-throughput chemical conversion on barcoded beads, efficiently marking newly transcribed mRNAs with T-to-C substitutions. Using scNT-seq, we jointly profiled new and old transcriptomes in ~55,000 single cells. These data revealed time-resolved transcription factor activities and cell-state trajectories at the single-cell level in response to neuronal activation. We further determined rates of RNA biogenesis and decay to uncover RNA regulatory strategies during stepwise conversion between pluripotent and rare totipotent two-cell embryo (2C)-like stem cell states. Finally, integrating scNT-seq with genetic perturbation identifies DNA methylcytosine dioxygenase as an epigenetic barrier into the 2C-like cell state. Time-resolved single-cell transcriptomic analysis thus opens new lines of inquiry regarding cell-type-specific RNA regulatory mechanisms.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Animales , Línea Celular , Embrión de Mamíferos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Neuronas/metabolismo , Análisis de Componente Principal , ARN Mensajero , Análisis de la Célula Individual , Factores de Tiempo
7.
PLoS Comput Biol ; 15(11): e1007509, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31756191

RESUMEN

The prevailing paradigm for the analysis of biological data involves comparing groups of replicates from different conditions (e.g. control and treatment) to statistically infer features that discriminate them (e.g. differentially expressed genes). However, many situations in modern genomics such as single-cell omics experiments do not fit well into this paradigm because they lack true replicates. In such instances, spectral techniques could be used to rank features according to their degree of consistency with an underlying metric structure without the need to cluster samples. Here, we extend spectral methods for feature selection to abstract simplicial complexes and present a general framework for clustering-independent analysis. Combinatorial Laplacian scores take into account the topology spanned by the data and reduce to the ordinary Laplacian score when restricted to graphs. We demonstrate the utility of this framework with several applications to the analysis of gene expression and multi-modal genomic data. Specifically, we perform differential expression analysis in situations where samples cannot be grouped into distinct classes, and we disaggregate differentially expressed genes according to the topology of the expression space (e.g. alternative paths of differentiation). We also apply this formalism to identify genes with spatial patterns of expression using fluorescence in-situ hybridization data and to establish associations between genetic alterations and global expression patterns in large cross-sectional studies. Our results provide a unifying perspective on topological data analysis and manifold learning approaches to the analysis of large-scale biological datasets.


Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Algoritmos , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA