Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 270: 120-134, 2018 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-29203413

RESUMEN

Therapeutic strategies using drugs which cause Lysosomal Cell Death have been proposed for eradication of resistant cancer cells. In this context, nanotherapy based on Magnetic Intra-Lysosomal Hyperthermia (MILH) generated by magnetic nanoparticles (MNPs) that are grafted with ligands of receptors overexpressed in tumors appears to be a very promising therapeutic option. However, mechanisms whereby MILH induces cell death are still elusive. Herein, using Gastrin-grafted MNPs specifically delivered to lysosomes of tumor cells from different cancers, we provide evidences that MILH causes cell death through a non-apoptotic signaling pathway. The mechanism of cell death involves a local temperature elevation at the nanoparticle periphery which enhances the production of reactive oxygen species through the lysosomal Fenton reaction. Subsequently, MILH induces lipid peroxidation, lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol, including Cathepsin-B which activates Caspase-1 but not apoptotic Caspase-3. These data highlight the clear potential of MILH for the eradication of tumors overexpressing receptors.


Asunto(s)
Compuestos Férricos/administración & dosificación , Gastrinas/administración & dosificación , Lisosomas/metabolismo , Nanopartículas/administración & dosificación , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Catepsina B/metabolismo , Línea Celular , Cricetinae , Calor , Humanos , Fenómenos Magnéticos
2.
Inorg Chem ; 56(16): 9486-9496, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28771337

RESUMEN

Two bismuth oxalates, namely, Bi2(C2O4)3·7H2O and Bi(C2O4)OH, were studied in terms of synthesis, structural characterization, particle morphology, and thermal behavior under several atmospheres. The oxalate powders were produced by chemical precipitation from bismuth nitrate and oxalic acid solutions under controlled pH, then characterized by X-ray diffraction (XRD), temperature-dependent XRD, IR spectroscopy, scanning electron microscopy, and thermogravimetric differential thermal analyses. New results on the thermal decomposition of bismuth oxalates under inert or reducing atmospheres are provided. On heating in nitrogen, both studied compounds decompose into small bismuth particles. Thermal properties of the metallic products were investigated. The Bi(C2O4)OH decomposition leads to a Bi-Bi2O3 metal-oxide composite product in which bismuth is confined in a nanometric size, due to surface oxidation. The melting point of such bismuth particles is strongly related to their crystallite size. The nanometric bismuth melting has thus been evidenced ∼40 °C lower than for bulk bismuth. These results should contribute to the development of the oxalate precursor route for low-temperature soldering applications.

3.
ACS Nano ; 8(2): 1350-63, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24401079

RESUMEN

Nanotherapy using targeted magnetic nanoparticles grafted with peptidic ligands of receptors overexpressed in cancers is a promising therapeutic strategy. However, nanoconjugation of peptides can dramatically affect their properties with respect to receptor recognition, mechanism of internalization, intracellular trafficking, and fate. Furthermore, investigations are needed to better understand the mechanism whereby application of an alternating magnetic field to cells containing targeted nanoparticles induces cell death. Here, we designed a nanoplatform (termed MG-IONP-DY647) composed of an iron oxide nanocrystal decorated with a ligand of a G-protein coupled receptor, the cholecystokinin-2 receptor (CCK2R) that is overexpressed in several malignant cancers. MG-IONP-DY647 did not stimulate inflammasome of Raw 264.7 macrophages. They recognized cells expressing CCK2R with a high specificity, subsequently internalized via a mechanism involving recruitment of ß-arrestins, clathrin-coated pits, and dynamin and were directed to lysosomes. Binding and internalization of MG-IONP-DY647 were dependent on the density of the ligand at the nanoparticle surface and were slowed down relative to free ligand. Trafficking of CCK2R internalized with the nanoparticles was slightly modified relative to CCK2R internalized in response to free ligand. Application of an alternating magnetic field to cells containing MG-IONP-DY647 induced apoptosis and cell death through a lysosomal death pathway, demonstrating that cell death is triggered even though nanoparticles of low thermal power are internalized in minute amounts by the cells. Together with pioneer findings using iron oxide nanoparticles targeting tumoral cells expressing epidermal growth factor receptor, these data represent a solid basis for future studies aiming at establishing the proof-of-concept of nanotherapy of cancers using ligand-grafted magnetic nanoparticles specifically internalized via cell surface receptors.


Asunto(s)
Muerte Celular , Neoplasias de las Glándulas Endocrinas/metabolismo , Magnetismo , Nanopartículas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Neoplasias de las Glándulas Endocrinas/patología , Compuestos Férricos/metabolismo , Gastrinas/metabolismo , Células HEK293 , Humanos , Macrófagos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA