Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241277

RESUMEN

The deposition of low-adhesive siloxane coatings is a current trend for the non-toxic control of bacterial growth and biofilm formation. Total elimination of biofilm formation has not been reported so far. The aim of this investigation was to study the ability of a non-toxic, natural, biologically active substance, such as fucoidan, to inhibit bacterial growth on similar medical coatings. The fucoidan amount was varied, and its impact on the bioadhesion-influencing surface characteristics, as well as on bacterial cell growth, was investigated. The inclusion of up to 3-4 wt.% brown algae-derived fucoidan in the coatings increases their inhibitory effect, more significantly on the Gram-positive bacterium S. aureus than on the Gram-negative bacterium Escherichia coli. The biological activity of the studied siloxane coatings was ascribed to the formation of a low-adhesive, biologically active surface top layer consisting of siloxane oil and dispersed water-soluble fucoidan particles. This is the first report on the antibacterial activity of fucoidan-containing medical siloxane coatings. The experimental results give reason to expect that relevantly selected, natural biologically active substances can be efficient in the non-toxic control of bacterial growth on medical devices and, as a result, medical device-associated infections.

2.
Microorganisms ; 9(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34576733

RESUMEN

Microbial adhesion and biofilm formation is a common, nondesirable phenomenon at any living or nonliving material surface in contact with microbial species. Despite the enormous efforts made so far, the protection of material surfaces against microbial adhesion and biofilm formation remains a significant challenge. Deposition of antimicrobial coatings is one approach to mitigate the problem. Examples of such are those based on heparin, cationic polymers, antimicrobial peptides, drug-delivering systems, and other coatings, each one with its advantages and shortcomings. The increasing microbial resistance to the conventional antimicrobial treatments leads to an increasing necessity for new antimicrobial agents, among which is a variety of carbon nanomaterials. The current review paper presents the last 5 years' progress in the development of graphene antimicrobial materials and graphene-based antimicrobial coatings that are among the most studied. Brief information about the significance of the biofouling, as well as the general mode of development and composition of microbial biofilms, are included. Preparation, antibacterial activity, and bactericidal mechanisms of new graphene materials, deposition techniques, characterization, and parameters influencing the biological activity of graphene-based coatings are focused upon. It is expected that this review will raise some ideas for perfecting the composition, structure, antimicrobial activity, and deposition techniques of graphene materials and coatings in order to provide better antimicrobial protection of medical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA