RESUMEN
Major depressive disorder (MDD) and type 2 diabetes (T2D) are complex disorders whose comorbidity can be due to hypercortisolism and may be explained by dysfunction of the corticotropin-releasing hormone receptor 1 (CRHR1) and cortisol feedback within the hypothalamic-pituitary-adrenal axis (HPA axis). To investigate the role of the CRHR1 gene in familial T2D, MDD, and MDD-T2D comorbidity, we tested 152 CRHR1 single-nucleotide-polymorphisms (SNPs), via 2-point parametric linkage and linkage disequilibrium (LD; i.e., association) analyses using 4 models, in 212 peninsular families with T2D and MDD. We detected linkage/LD/association to/with MDD and T2D with 122 (116 novel) SNPs. MDD and T2D had 4 and 3 disorder-specific novel risk LD blocks, respectively, whose risk variants reciprocally confirm one another. Comorbidity was conferred by 3 novel independent SNPs. In silico analyses reported novel functional changes, including the binding site of glucocorticoid receptor-alpha [GR-α] on CRHR1 for transcription regulation. This is the first report of CRHR1 pleiotropic linkage/LD/association with peninsular familial MDD and T2D. CRHR1 contribution to MDD is stronger than to T2D and may antecede T2D onset. Our findings suggest a new molecular-based clinical entity of MDD-T2D and should be replicated in other ethnic groups.
RESUMEN
While there have been significant advances in understanding the genetic etiology of human hair loss over the previous decade, there remain a number of hereditary disorders for which a causative gene has yet to be identified. We studied a large, consanguineous Brazilian family that presented with woolly hair at birth that progressed to severe hypotrichosis by the age of 5, in which 6 of the 14 offspring were affected. After exclusion of known candidate genes, a genome-wide scan was performed to identify the disease locus. Autozygosity mapping revealed a highly significant region of extended homozygosity (lod score of 10.41) that contained a haplotype with a linkage lod score of 3.28. Results of these two methods defined a 9-Mb region on chromosome 13q14.11-q14.2. The interval contains the P2RY5 gene, in which we recently identified pathogenic mutations in several families of Pakistani origin affected with autosomal recessive woolly and sparse hair. After the exclusion of several other candidate genes, we sequenced the P2RY5 gene and identified a homozygous mutation (C278Y) in all affected individuals in this family. Our findings show that mutations in P2RY5 display variable expressivity, underlying both hypotrichosis and woolly hair, and underscore the essential role of P2RY5 in the tissue integrity and maintenance of the hair follicle.