Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39273702

RESUMEN

This study aimed to elucidate the genetic causes underlying the juvenile parkinsonism (JP) diagnosed in a girl with several family members diagnosed with spinocerebellar ataxia type 2 (SCA2). To achieve this, whole-exome sequencing, analysis of CAG repeats, RNA sequencing analysis on fibroblasts, and metabolite identification were performed. As a result, a homozygous missense mutation SNP T>C (rs2254562) in synaptojamin 1 (SYNJ1), which has been implicated in the regulation of membrane trafficking in the synaptic vesicles, was identified. Additionally, we observed overexpression of L1 cell adhesion molecule (L1CAM), Cdc37, GPX1, and GPX4 and lower expression of ceruloplasmin in the patient compared to the control. We also found changes in sphingolipid, inositol, and inositol phosphate metabolism. These findings help to clarify the mechanisms of JP and suggest that the etiology of JP in the patient may be multifactorial. This is the first report of the rs2254562 mutation in the SYNJ gene identified in a JP patient with seizures and cognitive impairment.


Asunto(s)
Trastornos Parkinsonianos , Humanos , Femenino , Trastornos Parkinsonianos/genética , Mutación Missense , Secuenciación del Exoma , Linaje , Polimorfismo de Nucleótido Simple , Proteínas del Tejido Nervioso/genética , Niño , Multiómica
2.
Hum Genomics ; 18(1): 94, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227859

RESUMEN

BACKGROUND: The architecture and dynamics of T cell populations are critical in orchestrating the immune response to SARS-CoV-2. In our study, we used T Cell Receptor sequencing (TCRseq) to investigate TCR repertoires in 173 post-infection COVID-19 patients. METHODS: The cohort included 98 mild and 75 severe cases with a median age of 53. We amplified and sequenced the TCR ß chain Complementary Determining Region 3 (CDR3b) and performed bioinformatic analyses to assess repertoire diversity, clonality, and V/J allelic usage between age, sex and severity groups. CDR3b amino acid sequence inference was performed by clustering structural motifs and filtering validated reactive CDR3b to COVID-19. RESULTS: Our results revealed a pronounced decrease in diversity and an increase in clonal expansion in the TCR repertoires of severe COVID-19 patients younger than 55 years old. These results reflect the observed trends in patients older than 55 years old (both mild and severe). In addition, we identified a significant reduction in the usage of key V alleles (TRBV14, TRBV19, TRBV15 and TRBV6-4) associated with disease severity. Notably, severe patients under 55 years old had allelic patterns that resemble those over 55 years old, accompanied by a skewed frequency of COVID-19-related motifs. CONCLUSIONS: Present results suggest that severe patients younger than 55 may have a compromised TCR repertoire contributing to a worse disease outcome.


Asunto(s)
COVID-19 , Regiones Determinantes de Complementariedad , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Masculino , Persona de Mediana Edad , Femenino , SARS-CoV-2/inmunología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Adulto , Anciano , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , España , Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Alelos
3.
Nutrients ; 16(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203776

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) like intellectual disability (ID) are highly heritable, but the environment plays an important role. For example, endocrine disrupting chemicals (EDCs), including bisphenol A (BPA) and its analogues, have been termed neuroendocrine disruptors. This study aimed to evaluate the influence of different genetic polymorphisms (SNPs) on cognitive function in Spanish schoolchildren according to dietary bisphenol exposure. METHODS: A total of 102 children aged 6-12 years old were included. Ten SNPs in genes involved in brain development, synaptic plasticity, and neurotransmission (BDNF, NTRK2, HTR2A, MTHFR, OXTR, SLC6A2, and SNAP25) were genotyped. Then, dietary exposure to bisphenols (BPA plus BPS) was estimated and cognitive functions were assessed using the WISC-V Spanish form. RESULTS: BDNF rs11030101-T and SNAP25 rs363039-A allele carriers scored better on the fluid reasoning domain, except for those inheriting the BDNF rs6265-A allele, who had lower scores. Secondly, relevant SNP-bisphenol interactions existed in verbal comprehension (NTRK2 rs10868235 (p-int = 0.043)), working memory (HTR2A rs7997012 (p-int = 0.002), MTHFR rs1801133 (p-int = 0.026), and OXTR rs53576 (p-int = 0.030)) and fluid reasoning (SLC6A2 rs998424 (p-int = 0.004)). CONCLUSIONS: Our findings provide the first proof that exploring the synergistic or additive effects between genetic variability and bisphenol exposure on cognitive function could lead to a better understanding of the multifactorial and polygenic aetiology of NDDs.


Asunto(s)
Compuestos de Bencidrilo , Factor Neurotrófico Derivado del Encéfalo , Cognición , Disruptores Endocrinos , Fenoles , Polimorfismo de Nucleótido Simple , Humanos , Niño , Fenoles/efectos adversos , Compuestos de Bencidrilo/efectos adversos , Femenino , Masculino , España , Cognición/efectos de los fármacos , Disruptores Endocrinos/efectos adversos , Factor Neurotrófico Derivado del Encéfalo/genética , Exposición Dietética/efectos adversos , Receptores de Oxitocina/genética , Proteína 25 Asociada a Sinaptosomas/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Receptor de Serotonina 5-HT2A/genética , Receptor trkB/genética , Alelos , Genotipo , Glicoproteínas de Membrana
4.
Rapid Commun Mass Spectrom ; 38(18): e9859, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39034666

RESUMEN

RATIONALE: Conjugation sites are a quality attribute of conjugate vaccines. Proteolysis of bioconjugates synthesized by maleimide-thiol chemistry generates type 2 peptides with a hydrolyzed thiosuccinimide linker containing information on the conjugation sites. A mass spectrometry (MS)-cleavable linker could make the identification of conjugation sites by MS more reliable. METHODS: Four synthetic type 2 peptides with a hydrolyzed thiosuccinimide linker were analyzed by matrix-assisted laser desorption ionization (MALDI) MS/MS with and without collision gas. These peptides were also partially labeled with 18O in the linker to confirm the proposed fragmentation mechanism. A conjugate vaccine with the hydrolyzed thiosuccinimide linker was reduced and S-alkylated, digested with trypsin and analyzed by liquid chromatography-MS/MS using collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation methods at a normalized collision energy of 30. RESULTS: A metastable fragmentation preferentially cleaves the newly formed pseudopeptide bond within the hydrolyzed thiosuccinimide linker of type 2 peptides to yield P + 71 and C + 98 ions. These ions make the assignment of conjugation sites more reliable. Partial 18O-labeling and MS/MS analysis confirmed the proposed structures. CID produces these ions as the two most intense signals more favorably than HCD. The latter also yields these ions, guarantees better sequence coverage and promotes other fragmentations in the linker. CONCLUSIONS: Hydrolyzed thiosuccinimide linker is cleavable in MALDI and electrospray ionization MS/MS analysis by a gas-phase metastable fragmentation. The resulting fragment ions (P + 71 and C + 98) make the identification of conjugation sites more reliable. These results could be extended to self-hydrolyzing maleimides, which efficiently stabilize the thiosuccinimide linker upon hydrolysis, in antibody-drug conjugates.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Succinimidas , Espectrometría de Masas en Tándem , Vacunas Conjugadas , Succinimidas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Vacunas Conjugadas/química , Péptidos/química , Hidrólisis
5.
Thromb Res ; 240: 109060, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875847

RESUMEN

Antiplatelet therapy, the gold standard of care for patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI), is one of the therapeutic approaches most associated with the development of adverse drug reactions (ADRs). Although numerous studies have shown that pharmacological intervention based on a limited number of high-evidence variants (primarily CYP2C19*2 and *3) can reduce the incidence of major adverse cardiovascular events (MACEs), ADRs still occur at variable rates (10.1 % in our case) despite personalized therapy. This study aimed to identify novel genetic variants associated with the endpoint of MACEs 12 months after PCI by designing and analyzing a targeted gene panel. We sequenced 244 ACS-PCI-stent patients (109 with event and 135 without event) and 99 controls without structural cardiovascular disease and performed an association analysis to search for unexpected genetic variants. No single nucleotide polymorphisms reached genomic significance after correction, but three novel variants, including ABCA1 (rs2472434), KLB (rs17618244), and ZNF335 (rs3827066), may play a role in MACEs in ACS patients. These genetic variants are involved in regulating high-density lipoprotein levels and cholesterol deposition, and as they are regulatory variants, they may affect the expression of nearby lipid metabolism-related genes. Our findings suggest new targets (both at the gene and pathway levels) that may increase susceptibility to MACEs, but further research is needed to clarify the role and impact of the identified variants before these findings can be incorporated into the therapeutic decision-making process.


Asunto(s)
Síndrome Coronario Agudo , Secuenciación de Nucleótidos de Alto Rendimiento , Intervención Coronaria Percutánea , Inhibidores de Agregación Plaquetaria , Stents , Humanos , Síndrome Coronario Agudo/genética , Síndrome Coronario Agudo/terapia , Intervención Coronaria Percutánea/efectos adversos , Masculino , Femenino , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/efectos adversos , Persona de Mediana Edad , Stents/efectos adversos , Anciano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Mol Psychiatry ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806690

RESUMEN

Major depression (MD) and obesity are complex genetic disorders that are frequently comorbid. However, the study of both diseases concurrently remains poorly addressed and therefore the underlying genetic mechanisms involved in this comorbidity remain largely unknown. Here we examine the contribution of common and rare variants to this comorbidity through a next-generation sequencing (NGS) approach. Specific genomic regions of interest in MD and obesity were sequenced in a group of 654 individuals from the PISMA-ep epidemiological study. We obtained variants across the entire frequency spectrum and assessed their association with comorbid MD and obesity, both at variant and gene levels. We identified 55 independent common variants and a burden of rare variants in 4 genes (PARK2, FGF21, HIST1H3D and RSRC1) associated with the comorbid phenotype. Follow-up analyses revealed significantly enriched gene-sets associated with biological processes and pathways involved in metabolic dysregulation, hormone signaling and cell cycle regulation. Our results suggest that, while risk variants specific to the comorbid phenotype have been identified, the genes functionally impacted by the risk variants share cell biological processes and signaling pathways with MD and obesity phenotypes separately. To the best of our knowledge, this is the first study involving a targeted sequencing approach toward the study of the comorbid MD and obesity. The framework presented here allowed a deep characterization of the genetics of the co-occurring MD and obesity, revealing insights into the mutational and functional profile that underlies this comorbidity and contributing to a better understanding of the relationship between these two disabling disorders.

7.
Environ Toxicol Pharmacol ; 108: 104455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657881

RESUMEN

This study assessed whether genetic variants coding for certain enzymes involved in xenobiotic detoxification, antioxidant defences and DNA repair, along with exposure to environmental chemicals, were associated with an increased prostate cancer (PCa) risk. The study population consisted of 300 men (150 PCa cases and 150 controls) which underwent prostate biopsy as their serum prostate specific antigen (PSA) levels were greater than 4 ng/ml. Genetic variants in GSTM1, GSTP1, SOD2, CAT, GPX1, XRCC1 were determined and data for chemical exposures was obtained through a structured questionnaire and by biomonitoring in a subsample of cases and controls. High serum PSA levels were associated with a greater risk of PCa, while physical exercise appears to exert a protective effect against its development. In addition, elevated urinary levels of certain organic pollutants, such as benzo(a)pyrene (BaP), bisphenol A (BPA), and ethyl-paraben (EPB), were associated with an increased risk of PCa.


Asunto(s)
Contaminantes Ambientales , Estrés Oxidativo , Antígeno Prostático Específico , Neoplasias de la Próstata , Xenobióticos , Masculino , Humanos , Neoplasias de la Próstata/genética , Estrés Oxidativo/efectos de los fármacos , Persona de Mediana Edad , Anciano , Contaminantes Ambientales/orina , Contaminantes Ambientales/toxicidad , Antígeno Prostático Específico/sangre , Estudios de Casos y Controles , Exposición a Riesgos Ambientales/efectos adversos , Glutatión Transferasa/genética
9.
Rapid Commun Mass Spectrom ; 38(2): e9660, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124166

RESUMEN

RATIONALE: The thiosuccinimide linker is widely used in the synthesis of bioconjugates. However, it is susceptible to hydrolysis and is transformed into its hydrolyzed and/or the isobaric thiazine forms, the latter of which is a fairly common product in a conjugate that contains a cysteinyl peptide. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS) are useful for differentiating these isobaric species. METHODS: Four cross-linked peptides with thiosuccinimide linkers were synthesized. Analogs with linkers that were transformed into thiazine and/or the hydrolyzed thiosuccinimide linkers were then synthesized by incubating the samples at neutral or basic pH. All the cross-linked peptides were purified using RP-HPLC (reversed-phase high-performance liquid chromatography) and differentiated using MALDI-MS, MALDI-MS/MS, and ultraviolet photodissociation. RESULTS: A cysteinyl peptide-containing conjugate, the thiosuccinimide form, was largely transformed into the hydrolyzed or thiazine forms after incubation at neutral or basic pH. MALDI-MS allowed the three forms to be differentiated: the thiosuccinimide and its hydrolysis product yielded two constituent peptides after reductive cleavage between the Cys and succinimide moieties; no fragment ions were produced from the thiazine form. In addition, MALDI-MS/MS of the thiosuccinimide form yielded two pairs of complementary fragment ions via 1,4-elimination: Cys-SH and maleimide, and dehydro-alanine and thiosuccinimide, which are different from those produced via reductive cleavage in MALDI-MS. The thiazine form yielded fragment ions resulting from the cleavage of the newly formed amide bond in the linker that resulted from thiazine formation. CONCLUSIONS: The thiosuccinimide (but not thiazine) form of the cross-linked peptide yielded individual constituent peptides using MALDI-MS and MALDI-MS/MS, showing specific 1,4-elimination for the thiosuccinimide form and cleavage at the newly formed peptide bond via transcyclization for the thiazine form.


Asunto(s)
Espectrometría de Masas en Tándem , Tiazinas , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Péptidos/química , Iones , Maleimidas
10.
Front Bioeng Biotechnol ; 11: 1287551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38050488

RESUMEN

We have developed a single process for producing two key COVID-19 vaccine antigens: SARS-CoV-2 receptor binding domain (RBD) monomer and dimer. These antigens are featured in various COVID-19 vaccine formats, including SOBERANA 01 and the licensed SOBERANA 02, and SOBERANA Plus. Our approach involves expressing RBD (319-541)-His6 in Chinese hamster ovary (CHO)-K1 cells, generating and characterizing oligoclones, and selecting the best RBD-producing clones. Critical parameters such as copper supplementation in the culture medium and cell viability influenced the yield of RBD dimer. The purification of RBD involved standard immobilized metal ion affinity chromatography (IMAC), ion exchange chromatography, and size exclusion chromatography. Our findings suggest that copper can improve IMAC performance. Efficient RBD production was achieved using small-scale bioreactor cell culture (2 L). The two RBD forms - monomeric and dimeric RBD - were also produced on a large scale (500 L). This study represents the first large-scale application of perfusion culture for the production of RBD antigens. We conducted a thorough analysis of the purified RBD antigens, which encompassed primary structure, protein integrity, N-glycosylation, size, purity, secondary and tertiary structures, isoform composition, hydrophobicity, and long-term stability. Additionally, we investigated RBD-ACE2 interactions, in vitro ACE2 recognition of RBD, and the immunogenicity of RBD antigens in mice. We have determined that both the monomeric and dimeric RBD antigens possess the necessary quality attributes for vaccine production. By enabling the customizable production of both RBD forms, this unified manufacturing process provides the required flexibility to adapt rapidly to the ever-changing demands of emerging SARS-CoV-2 variants and different COVID-19 vaccine platforms.

11.
Biomed Pharmacother ; 169: 115869, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37952358

RESUMEN

Betablockers (BBs) are prescribed for ischaemia in patients with acute coronary syndrome (ACS). In Spain, bisoprolol and carvedilol are the most prescribed BBs, but patients often had to discontinue them due to adverse effects. Single nucleotide polymorphisms (SNPs) in ADRB1, ADRB2 and CYP2D6 genes have strong evidence of pharmacogenetic association with BBs in heart failure or hypertension, but the evidence in ACS is limited. Therefore, our study focuses on investigating how these genes influence the response to BBs in ACS patients. We analysed the association between SNPs in ADRB1 Gly389Arg (rs1801253) and Ser49Gly (rs1801252), ADRB2 Gly16Arg (rs1042713) and Glu27Gln (rs1042714), and CYP2D* 6 (*2- rs1080985, *4- rs3892097, *10 - rs1065852) and the occurrence of bradycardia/hypotension events during one year of follow-up. We performed an observational study and included 285 ACS-PCI-stent patients. A first analysis including patients treated with bisoprolol and a second analysis including patients treated with other BBs were performed. We found that the presence of the G allele (Glu) of the ADRB2 gene (rs1042714; Glu27Gln) conferred a protective effect against hypotension-induced by BBs; OR (CI 95%) = 0,14 (0,03-0,60), p < 0.01. The ADRB2 (rs1042713; Gly16Arg) GG genotype could also prevent hypotensive events; OR (CI 95%) = 0.49 (0.28-0.88), p = 0015. SNPs in ADRB1 and CYP2D6 * 2, CYP2D6 * 4 weren´t associated with primary events. The effect of CYP2D6 * 10 does not seem to be relevant for the response to BBs. According to our findings, SNPs in ADRB2 (rs1042713, rs1042714) could potentially affect the response and tolerance to BBs in ACS-patients. Further studies are necessary to clarify the impact of ADRB2 polymorphisms.


Asunto(s)
Síndrome Coronario Agudo , Hipotensión , Intervención Coronaria Percutánea , Humanos , Citocromo P-450 CYP2D6/genética , Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/genética , Bisoprolol/uso terapéutico , Antagonistas Adrenérgicos beta/uso terapéutico , Genotipo , Polimorfismo de Nucleótido Simple/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
12.
PLoS One ; 18(9): e0288006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751460

RESUMEN

Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Células HEK293 , Vacunas contra la COVID-19 , Nucleocápside , Ligando de CD40/genética , Proteínas Recombinantes de Fusión/genética
13.
Comput Methods Programs Biomed ; 240: 107719, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453366

RESUMEN

BACKGROUND AND OBJECTIVE: Prostate cancer is one of the most prevalent forms of cancer in men worldwide. Traditional screening strategies such as serum PSA levels, which are not necessarily cancer-specific, or digital rectal exams, which are often inconclusive, are still the screening methods used for the disease. Some studies have focused on identifying biomarkers of the disease but none have been reported for diagnosis in routine clinical practice and few studies have provided tools to assist the pathologist in the decision-making process when analyzing prostate tissue. Therefore, a classifier is proposed to predict the occurrence of PCa that provides physicians with accurate predictions and understandable explanations. METHODS: A selection of 47 genes was made based on differential expression between PCa and normal tissue, GO gene ontology as well as the literature to be used as input predictors for different machine learning methods based on eXplainable Artificial Intelligence. These methods were trained using different class-balancing strategies to build accurate classifiers using gene expression data from 550 samples from 'The Cancer Genome Atlas'. Our model was validated in four external cohorts with different ancestries, totaling 463 samples. In addition, a set of SHapley Additive exPlanations was provided to help clinicians understand the underlying reasons for each decision. RESULTS: An in-depth analysis showed that the Random Forest algorithm combined with majority class downsampling was the best performing approach with robust statistical significance. Our method achieved an average sensitivity and specificity of 0.90 and 0.8 with an AUC of 0.84 across all databases. The relevance of DLX1, MYL9 and FGFR genes for PCa screening was demonstrated in addition to the important role of novel genes such as CAV2 and MYLK. CONCLUSIONS: This model has shown good performance in 4 independent external cohorts of different ancestries and the explanations provided are consistent with each other and with the literature, opening a horizon for its application in clinical practice. In the near future, these genes, in combination with our model, could be applied to liquid biopsy to improve PCa screening.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Sensibilidad y Especificidad , Expresión Génica
14.
Sci Total Environ ; 898: 165530, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453710

RESUMEN

The development and progression of prostate cancer (PCa) depends on complex interactions between genetic, environmental and dietary factors that modulate the carcinogenesis process. Interactions between chemical exposures and genetic polymorphisms in genes encoding xenobiotic metabolizing enzymes (XME), antioxidant enzymes and DNA repair enzymes have been reported as the main drivers of cancer. Thus, a better understanding of the causal risk factors for PCa will provide avenues to identify men at increased risk and will contribute to develop effective detection and prevention methods. We performed a meta-analysis on 17,518 cases and 42,507 controls obtained from 42 studies to determine whether seven SNPs and one CNV pertaining to oxidative stress, xenobiotic detoxification and DNA repair enzymes are associated with the risk of PCa (GPX1 (rs1050450), XRCC1 (rs25487), PON1 (rs662), SOD2 (rs4880), CAT (rs1001179), GSTP1 (rs1695) and CNV GSTM1). A significant increased risk of PCa was found for SOD2 (rs4880) ORGG+GA vs. AA 1.08; 95%CI 1.01-1.15, CAT (rs1001179) ORTT vs. TC+CC 1.39; 95%CI 1.17-1.66, PON1 (rs662) ORCT vs. CC+TT 1.17; 95%CI 1.01-1.35, GSTP1 (rs1695) ORGG vs. GA+AA 1.20; 95%CI 1.05-1.38 and GSTM1 (dual null vs. functional genotype) ORN vs. NN1+NN2 1.34; 95%CI 1.10-1.64. The meta-analysis showed that the CNV GSTM1, and the SNPs GSTP1 (rs1695) and CAT (rs1001179) are strongly associated with a greater risk of PCa and, to a lesser extent, the genetic variants SOD2 (rs4880) and PON1 (rs662). Although several antioxidant enzymes and XME play an important role in the PCa development, other risk factors such as chemical exposures should also be considered to gain insight on PCa risk. The functional in silico analysis showed that the genetic variants studied had no clinical implication regarding malignancy, except for GPX1 (rs1050450) SNP.


Asunto(s)
Antioxidantes , Neoplasias de la Próstata , Masculino , Humanos , Xenobióticos , Gutatión-S-Transferasa pi/genética , Genotipo , Neoplasias de la Próstata/genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Arildialquilfosfatasa/genética
15.
Hum Genomics ; 17(1): 50, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287057

RESUMEN

BACKGROUND: The use of molecular biomarkers for COVID-19 remains unconclusive. The application of a molecular biomarker in combination with clinical ones that could help classifying aggressive patients in first steps of the disease could help clinician and sanitary system a better management of the disease. Here we characterize the role of ACE2, AR, MX1, ERG, ETV5 and TMPRSS2 for trying a better classification of COVID-19 through knowledge of the disease mechanisms. METHODS: A total of 329 blood samples were genotyped in ACE2, MX1 and TMPRSS2. RNA analyses were also performed from 258 available samples using quantitative polymerase chain reaction for genes: ERG, ETV5, AR, MX1, ACE2, and TMPRSS2. Moreover, in silico analysis variant effect predictor, ClinVar, IPA, DAVID, GTEx, STRING and miRDB database was also performed. Clinical and demographic data were recruited from all participants following WHO classification criteria. RESULTS: We confirm the use of ferritin (p < 0.001), D-dimer (p < 0.010), CRP (p < 0.001) and LDH (p < 0.001) as markers for distinguishing mild and severe cohorts. Expression studies showed that MX1 and AR are significantly higher expressed in mild vs severe patients (p < 0.05). ACE2 and TMPRSS2 are involved in the same molecular process of membrane fusion (p = 4.4 × 10-3), acting as proteases (p = 0.047). CONCLUSIONS: In addition to the key role of TMPSRSS2, we reported for the first time that higher expression levels of AR are related with a decreased risk of severe COVID-19 disease in females. Moreover, functional analysis demonstrates that ACE2, MX1 and TMPRSS2 are relevant markers in this disease.


Asunto(s)
COVID-19 , Femenino , Humanos , COVID-19/genética , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/genética , Marcadores Genéticos , Bases de Datos Factuales , Serina Endopeptidasas/genética , Proteínas de Resistencia a Mixovirus
16.
Sci Total Environ ; 873: 162333, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813201

RESUMEN

Exposure to metal(loid)s during critical developmental windows could result in permanent damage to the target organ system, increasing susceptibility to disease later in life. In view of the fact that metals(loid)s have been shown to work as obesogens, the aim of the present case-control study was to evaluate the modification effect of exposure to metal(loid)s on the association between SNPs in genes involved in metal(loid) detoxification and excess body weight among children. A total of 134 Spanish children aged 6-12 years old were included (88 controls and 46 cases). Seven SNPs (GSTP1 rs1695 and rs1138272; GCLM rs3789453, ATP7B rs1061472, rs732774 and rs1801243; and ABCC2 rs1885301) were genotyped on GSA microchips, and ten metal(loid)s were analysed in urine samples through Inductively coupled plasma mass spectrometry (ICP-MS). Multivariable logistic regressions were conducted to assess the genetic and metal exposures' main association and interaction effects. GSTP1 rs1695 and ATP7B rs1061472 showed significant effects on excess weight increase in those children carrying two copies of the risk G allele and being highly exposed to chromium (ORa = 5.38, p = 0.042, p interaction = 0.028 for rs1695; and ORa = 4.20, p = 0.035, p interaction = 0.012 for rs1061472) and lead (ORa = 7.18, p = 0.027, p interaction = 0.031 for rs1695, and ORa = 3.42, p = 0.062, p interaction = 0.010 for rs1061472). Conversely, GCLM rs3789453 and ATP7B rs1801243 appeared to play a protective role against excess weight in those exposed to copper (ORa = 0.20, p = 0.025, p interaction = 0.074 for rs3789453) and lead (ORa = 0.22, p = 0.092, p interaction = 0.089 for rs1801243). Our findings provide the first proof that interaction effects could exist between genetic variants within GSH and metal transporting systems and exposure to metal(loid)s, on excess body weight among Spanish children.


Asunto(s)
Metales Pesados , Metales , Humanos , Niño , Cobre , Genotipo , Polimorfismo de Nucleótido Simple , Peso Corporal , Metales Pesados/orina
17.
Cells ; 11(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36552831

RESUMEN

HeberFERON, a co-formulation of Interferon (IFN)-α2b and IFN-γ, has effects on skin cancer and other solid tumors. It has antiproliferative effects over glioblastoma multiform (GBM) clones and cultured cell lines, including U-87 MG. Here, we report the first label-free quantitative proteomic and phospho-proteomic analyses to evaluate changes induced by HeberFERON after 72 h incubation of U-87 MG that can explain the effect on cellular proliferation. LC-MS/MS, functional enrichment and networking analysis were performed. We identified 7627 proteins; 122 and 211 were down- and up-regulated by HeberFERON (fold change > 2; p < 0.05), respectively. We identified 23,549 peptides (5692 proteins) and 8900 phospho-peptides; 523 of these phospho-peptides (359 proteins) were differentially modified. Proteomic enrichment showed IFN signaling and its control, direct and indirect antiviral mechanisms were the main modulated processes. Phospho-proteome enrichment displayed the cell cycle as one of the most commonly targeted events together with cytoskeleton organization; translation/RNA splicing, autophagy and DNA repair, as represented biological processes. There is a high interconnection of phosphoproteins in a molecular network; mTOR occupies a centric hub with interactions with translation machinery, cytoskeleton and autophagy components. Novel phosphosites and others with unknown biological functionality in key players in the aforementioned processes were regulated by HeberFERON and involved CDK and ERK kinases. These findings open new experimental hypotheses regarding HeberFERON action. The results obtained contribute to a better understanding of HeberFERON effector mechanisms in the context of GBM treatment.


Asunto(s)
Glioblastoma , Humanos , Cromatografía Liquida , Glioblastoma/metabolismo , Interferón-alfa/farmacología , Péptidos , Proteómica/métodos , Espectrometría de Masas en Tándem , Línea Celular Tumoral
18.
Pharmaceutics ; 14(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893809

RESUMEN

A severe form of myopia defined as pathologic/high myopia is the main cause of visual impairment and one of the most frequent causes of blindness worldwide. It is characterized by at least 6 diopters or axial length (AL) of eyeball > 26 mm and choroidal neovascularization (CNV) in 5 to 10% of cases. Ranibizumab is a humanized recombinant monoclonal antibody fragment targeted against human vascular endothelial growth factor A (VEGF-A) used in the treatment of CNV. It acts by preventing VEGF-A from interacting with its receptors (VEGFR-1 and -2) encoded by the FLT1 and KDR genes. Several studies found that the KDR and FLT1 genotypes may represent predictive determinants of efficacy in ranibizumab-treated neovascular age-related macular degeneration (nAMD) patients. We performed a retrospective study to evaluate the association of single nucleotide polymorphisms (SNPs) in VEGFR coding genes with the response rate to ranibizumab in patients with high myopia and CNV. In the association study of genotypes in FLT1 with the response to ranibizumab, we found a significant association between two FLT1 variants (rs9582036, rs7993418) with ranibizumab efficacy at the 12-month follow-up. About the KDR gene, we found that two KDR variants (rs2305948, rs2071559) are associated with best-corrected visual acuity (BCVA) improvement and KDR (rs2239702) is associated with lower rates of BCVA worsening considering a 12-month follow-up period.

19.
Vaccines (Basel) ; 10(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35746505

RESUMEN

COVID-19 is a respiratory viral disease caused by a new coronavirus called SARS-CoV-2. This disease has spread rapidly worldwide with a high rate of morbidity and mortality. The receptor-binding domain (RBD) of protein spike (S) mediates the attachment of the virus to the host's cellular receptor. The RBD domain constitutes a very attractive target for subunit vaccine development due to its ability to induce a neutralizing antibody response against the virus. With the aim of boosting the immunogenicity of RBD, it was fused to the extracellular domain of CD154, an immune system modulator molecule. To obtain the chimeric protein, stable transduction of HEK-293 was carried out with recombinant lentivirus and polyclonal populations and cell clones were obtained. RBD-CD was purified from culture supernatant and further characterized by several techniques. RBD-CD immunogenicity evaluated in mice and non-human primates (NHP) indicated that recombinant protein was able to induce a specific and high IgG response after two doses. NHP sera also neutralize SARS-CoV-2 infection of Vero E6 cells. RBD-CD could improve the current vaccines against COVID-19, based in the enhancement of the host humoral and cellular response. Further experiments are necessary to confirm the utility of RBD-CD as a prophylactic vaccine and/or booster purpose.

20.
RSC Chem Biol ; 3(2): 242-249, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35360883

RESUMEN

SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host's cellular receptor. Vaccines seek to block this interaction by eliciting neutralizing antibodies, most of which are directed toward the RBD. Many protein subunit vaccines require powerful adjuvants to generate a potent antibody response. Here, we report on the use of a SARS-CoV-2 dimeric recombinant RBD combined with Neisseria meningitidis outer membrane vesicles (OMVs), adsorbed on alum, as a promising COVID-19 vaccine candidate. This formulation induces a potent and neutralizing immune response in laboratory animals, which is higher than that of the dimeric RBD alone adsorbed on alum. Sera of people vaccinated with this vaccine candidate, named Soberana01, show a high inhibition level of the RBD-ACE2 interaction using RBD mutants corresponding to SARS-CoV-2 variants of concern and wild-type expressed using the phage display technology. To our knowledge, this is the first time that the immunostimulation effect of N. meningitidis OMVs is evaluated in vaccine candidates against SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA