RESUMEN
The extremotolerant red yeast Rhodotorula mucilaginosa displays resilience to diverse environmental stressors, including cold, osmolarity, salinity, and oligotrophic conditions. Particularly, this yeast exhibits a remarkable ability to accumulate lipids and carotenoids in response to stress conditions. However, research into lipid biosynthesis has been hampered by limited genetic tools and a scarcity of studies on adaptive responses to nutrient stressors stimulating lipogenesis. This study investigated the impact of nitrogen stress on the adaptive response in Antarctic yeast R. mucilaginosa M94C9. Varied nitrogen availability reveals a nitrogen-dependent modulation of biomass and lipid droplet production, accompanied by significant ultrastructural changes to withstand nitrogen starvation. In silico analysis identifies open reading frames of genes encoding key lipogenesis enzymes, including acetyl-CoA carboxylase (Acc1), fatty acid synthases 1 and 2 (Fas1/Fas2), and acyl-CoA diacylglycerol O-acyltransferase 1 (Dga1). Further investigation into the expression profiles of RmACC1, RmFAS1, RmFAS2, and RmDGA1 genes under nitrogen stress revealed that the prolonged up-regulation of the RmDGA1 gene is a molecular indicator of lipogenesis. Subsequent fatty acid profiling unveiled an accumulation of oleic and palmitic acids under nitrogen limitation during the stationary phase. This investigation enhances our understanding of nitrogen stress adaptation and lipid biosynthesis, offering valuable insights into R. mucilaginosa M94C9 for potential industrial applications in the future.
RESUMEN
Subtelomeric gene silencing is the negative transcriptional regulation of genes located close to telomeres. This phenomenon occurs in a variety of eukaryotes with salient physiological implications, such as cell adherence, virulence, immune-system escape, and ageing. The process has been widely studied in the budding yeast Saccharomyces cerevisiae, where genes involved in this process have been identified mostly on a gene-by-gene basis. Here, we introduce a quantitative approach to study gene silencing, that couples the classical URA3 reporter with GFP monitoring, amenable to high-throughput flow cytometry analysis. This dual silencing reporter was integrated into several subtelomeric loci in the genome, where it showed a gradual range of silencing effects. By crossing strains with this dual reporter at the COS12 and YFR057W subtelomeric query loci with gene-deletion mutants, we carried out a large-scale forward screen for potential silencing factors. The approach was replicable and allowed accurate detection of expression changes. Results of our comprehensive screen suggest that the main players influencing subtelomeric silencing were previously known, but additional potential factors underlying chromatin conformation are involved. We validate and report the novel silencing factor LGE1, a protein with unknown molecular function required for histone H2B ubiquitination. Our strategy can be readily combined with other reporters and gene perturbation collections, making it a versatile tool to study gene silencing at a genome-wide scale.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Heterocromatina/metabolismo , Regulación Fúngica de la Expresión GénicaRESUMEN
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder of unknown etiology. Hyperandrogenism (HA) is the main diagnostic criteria for PCOS, in addition to being a risk factor for developing several disorders throughout the patient's life, including pregnancy. However, the impact on offspring is little known. Therefore, the aim of this work was to evaluate the effect of maternal HA on glucose metabolism and hepatic lipid accumulation in adult offspring. We used Balb/c mice treated with dehydroepiandrosterone (DHEA) for 20 consecutive days. The ovary of DHEA-treated mice showed hemorrhagic bodies, an increased number of atretic follicles, and greater expression of genes related to meiotic cell cycle and DNA repair. The DHEA offspring (O-DHEA) had low birth weight, and some pups showed malformations. However, O-DHEA individuals gained weight rapidly, and the differences between them and the control group became significantly greater in adulthood. Moreover, O-DHEA presented higher serum glucose after a 6 h fast and a larger area under glucose, insulin, and pyruvate tolerance test curves. Oil Red O staining showed a more significant accumulation of fat in the liver but no changes in serum cholesterol and triacylglycerol levels. In summary, our results show that HA, induced by DHEA, affects gene expression in oocyte, which in turn generates defects in embryonic development, insulin resistance, and alteration in hepatic gluconeogenesis and lipid metabolism in O-DHEA, thereby increasing the risk of developing metabolic diseases.
RESUMEN
Trypanosoma cruzi is a parasite transmitted by the feces of triatomines. Many triatomine species are found in Mexico, and various T. cruzi variants have been isolated from these species, each showing very different virulence and cell tropism. The isolates were obtained from Meccus phyllosoma specimens in three localities in the state of Oaxaca, Mexico: Tehuantitla, Vixhana, and Guichivere. The virulence of each isolate was assessed by quantifying parasitemia, survival, and histopathologic findings. The lineage of each isolate was identified using the mini-exon gene. The expression of the tssa gene during infection was detected in the heart, esophagus, gastrocnemius, and brain. Our results show that the maximum post-infection parasitemia was higher for the Tehuantitla isolate. On genotyping, all isolates were identified as T. cruzi I. The amastigotes in the heart and gastrocnemius were verified for all isolates, but in the brain only for Tehuantitla and Vixhana. The tssa expression allowed us to detect T. cruzi isolates, for Tehuantitla, predominantly in the heart. For Vixhana, a higher tssa expression was detected in gastrocnemius, and for Guichivere, it was higher in the esophagus. Results show that virulence, tropism, and tssa expression can vary, even when the isolates are derived from the same vector species, in the same region, and at similar altitudes.
RESUMEN
The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine-serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.
RESUMEN
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
RESUMEN
BACKGROUND: From the start of the COVID-19 pandemic, new SARS-CoV-2 variants have emerged that potentially affect transmissibility, severity, and immune evasion in infected individuals. In the present systematic review, the impact of different SARS-CoV-2 variants on clinical outcomes is analyzed. METHODS: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Two databases (PubMed and ScienceDirect) were searched for original articles published from 1 January 2020 to 23 November 2021. The articles that met the selection criteria were appraised according to the Newcastle-Ottawa Quality Assessment Scale. RESULTS: Thirty-three articles were included, involving a total of 253,209 patients and 188,944 partial or complete SARS-CoV-2 sequences. The most reported SARS-CoV-2 variants showed changes in the spike protein, N protein, RdRp and NSP3. In 28 scenarios, SARS-CoV-2 variants were found to be associated with a mild to severe or even fatal clinical outcome, 15 articles reported such association to be statistically significant. Adjustments in eight of them were made for age, sex and other covariates. CONCLUSIONS: SARS-CoV-2 variants can potentially have an impact on clinical outcomes; future studies focused on this topic should consider several covariates that influence the clinical course of the disease.
RESUMEN
In December 2019, the first cases of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified in the city of Wuhan, China. Since then, it has spread worldwide with new mutations being reported. The aim of the present study was to monitor the changes in genetic diversity and track non-synonymous substitutions (dN) that could be implicated in the fitness of SARS-CoV-2 and its spread in different regions between December 2019 and November 2020. We analyzed 2213 complete genomes from six geographical regions worldwide, which were downloaded from GenBank and GISAID databases. Although SARS-CoV-2 presented low genetic diversity, there has been an increase over time, with the presence of several hotspot mutations throughout its genome. We identified seven frequent mutations that resulted in dN substitutions. Two of them, C14408T>P323L and A23403G>D614G, located in the nsp12 and Spike protein, respectively, emerged early in the pandemic and showed a considerable increase in frequency over time. Two other mutations, A1163T>I120F in nsp2 and G22992A>S477N in the Spike protein, emerged recently and have spread in Oceania and Europe. There were associations of P323L, D614G, R203K and G204R substitutions with disease severity. Continuous molecular surveillance of SARS-CoV-2 will be necessary to detect and describe the transmission dynamics of new variants of the virus with clinical relevance. This information is important to improve programs to control the virus.
RESUMEN
Divergence of paralogous pairs, resulting from gene duplication, plays an important role in the evolution of specialized or novel gene functions. Analysis of selected duplicated pairs has elucidated some of the mechanisms underlying the functional diversification of Saccharomyces cerevisiae (S. cerevisiae) paralogous genes. Similar studies of the orthologous pairs extant in pre-whole genome duplication yeast species, such as Kluyveromyces lactis (K. lactis) remain to be addressed. The genome of K. lactis, an aerobic yeast, includes gene pairs generated by sporadic duplications. The genome of this organism comprises the KlLEU4 and KlLEU4BIS paralogous pair, annotated as putative α-isopropylmalate synthases (α-IPMSs), considered to be the orthologs of the S. cerevisiae ScLEU4/ScLEU9 paralogous genes. The enzymes encoded by the latter two genes are mitochondrially located, differing in their sensitivity to leucine allosteric inhibition resulting in ScLeu4-ScLeu4 and ScLeu4-ScLeu9 sensitive dimers and ScLeu9-ScLeu9 relatively resistant homodimers. Previous work has shown that, in a Scleu4Δ mutant, ScLEU9 expression is increased and assembly of ScLeu9-ScLeu9 leucine resistant homodimers results in loss of feedback regulation of leucine biosynthesis, leading to leucine accumulation and decreased growth rate. Here we report that: (i) K. lactis harbors a sporadic gene duplication, comprising the KlLEU4, syntenic with S. cerevisiae ScLEU4 and ScLEU9, and the non-syntenic KlLEU4BIS, arising from a pre-WGD event. (ii) That both, KlLEU4 and KlLEU4BIS encode leucine sensitive α-IPMSs isozymes, located in the mitochondria (KlLeu4) and the cytosol (KlLeu4BIS), respectively. (iii) That both, KlLEU4 or KlLEU4BIS complement the Scleu4Δ Scleu9Δ leucine auxotrophic phenotype and revert the enhanced ScLEU9 transcription observed in a Scleu4Δ ScLEU9 mutant. The Scleu4Δ ScLEU9 growth mutant phenotype is only fully complemented when transformed with the syntenic KlLEU4 mitochondrial isoform. KlLEU4 and KlLEU4BIS underwent a different diversification pathways than that leading to ScLEU4/ScLEU9. KlLEU4 could be considered as the functional ortholog of ScLEU4, since its encoded isozyme can complement both the Scleu4Δ Scleu9Δ leucine auxotrophy and the Scleu4Δ ScLEU9 complex phenotype.
RESUMEN
The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.
Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Sirolimus/farmacología , Ustilago/efectos de los fármacos , Antifúngicos/farmacología , Lípidos/análisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Triglicéridos/administración & dosificación , Ustilago/química , Vacuolas/químicaRESUMEN
Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1 and 66% with KlAlt1, suggests that ScAlt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent LkAlt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1, while ScALT2 lost this role during diversification.
RESUMEN
Production of α-isopropylmalate (α-IPM) is critical for leucine biosynthesis and for the global control of metabolism. The budding yeast Saccharomyces cerevisiae has two paralogous genes, LEU4 and LEU9, that encode α-IPM synthase (α-IPMS) isozymes. Little is known about the biochemical differences between these two α-IPMS isoenzymes. Here, we show that the Leu4 homodimer is a leucine-sensitive isoform, while the Leu9 homodimer is resistant to such feedback inhibition. The leu4Δ mutant, which expresses only the feedback-resistant Leu9 homodimer, grows slowly with either glucose or ethanol and accumulates elevated pools of leucine; this phenotype is alleviated by the addition of leucine. Transformation of the leu4Δ mutant with a centromeric plasmid carrying LEU4 restored the wild-type phenotype. Bimolecular fluorescent complementation analysis showed that Leu4-Leu9 heterodimeric isozymes are formed in vivo. Purification and kinetic analysis showed that the hetero-oligomeric isozyme has a distinct leucine sensitivity behavior. Determination of α-IPMS activity in ethanol-grown cultures showed that α-IPM biosynthesis and growth under these respiratory conditions depend on the feedback-sensitive Leu4 homodimer. We conclude that retention and further diversification of two yeast α-IPMSs have resulted in a specific regulatory system that controls the leucine-α-IPM biosynthetic pathway by selective feedback sensitivity of homomeric and heterodimeric isoforms.