Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392379

RESUMEN

There is a general agreement among researchers that supercritical carbon dioxide (sCO2) cycles will be part of the next generation of thermal power plants, especially in concentrating solar power (CSP) plants. While certain studies focus on maximizing the efficiency of these cycles in the hope of achieving a reduction in electricity costs, it is important to note that this assumption does not always hold true. This work provides a comprehensive analysis of the differences between minimizing the cost and maximizing the efficiency for the most remarkable sCO2 cycles. The analysis considers the most important physical uncertainties surrounding CSP and sCO2 cycles, such as turbine inlet temperature, ambient temperature, pressure drop and turbomachinery efficiency. Moreover, the uncertainties related to cost are also analyzed, being divided into uncertainties of sCO2 component costs and uncertainties of heating costs. The CSP system with partial cooling (sometimes with reheating and sometimes without it) is the cheapest configuration in the analyzed cases. However, the differences in cost are generally below 5% (and sometimes neglectable), while the differences in efficiency are significantly larger and below 15%. Besides the much lower efficiency of systems with simple cycle, if the heating cost is low enough, their cost could be even lower than the cost of the system with partial cooling. Systems with recompression cycles could also achieve costs below systems with partial cooling if the design's ambient temperature and the pressure drop are low.

2.
Entropy (Basel) ; 23(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419200

RESUMEN

Particle receivers are one of the candidates for the next generation of CSP plants, whose goal is to reduce the levelized cost of electricity (LCOE) to 0.05 $/kWh. This paper presents a techno-economic analysis to study if a CSP system with free-falling particle receiver can achieve this goal. The plant analyzed integrates two ground-based bins to store the excess energy and a supercritical CO2 cycle to generate electricity. The model used for the analysis presents several upgrades to previous particle systems models in order to increase its fidelity, accuracy, and representativeness of an actual system. The main upgrades are the addition of off-design conditions during the annual simulations in all the components and an improved receiver model validated against CFD simulations. The size of the main components is optimized to obtain the system configuration with minimum LCOE. The results show that particle CSP systems can reduce the LCOE to 0.056 $/kWh if the configuration is composed of 1.61 × 106 m2 of heliostats, a 250 m high tower with a 537 m2 falling particle curtain, and 16 h thermal energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA