Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 22(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-33286685

RESUMEN

A permanent challenge in physics and other disciplines is to solve Euler-Lagrange equations. Thereby, a beneficial investigation is to continue searching for new procedures to perform this task. A novel Monte Carlo Metropolis framework is presented for solving the equations of motion in Lagrangian systems. The implementation lies in sampling the path space with a probability functional obtained by using the maximum caliber principle. Free particle and harmonic oscillator problems are numerically implemented by sampling the path space for a given action by using Monte Carlo simulations. The average path converges to the solution of the equation of motion from classical mechanics, analogously as a canonical system is sampled for a given energy by computing the average state, finding the least energy state. Thus, this procedure can be general enough to solve other differential equations in physics and a useful tool to calculate the time-dependent properties of dynamical systems in order to understand the non-equilibrium behavior of statistical mechanical systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA