RESUMEN
BACKGROUND: Isocitrate dehydrogenase 1 (IDH1) is a dimeric enzyme responsible for supplying the cell's nicotinamide adenine dinucleotide phosphate (NADPH) reserves via dehydrogenation of isocitrate (ICT) and reduction of NADP+. Mutations in position R132 trigger cancer by enabling IDH1 to produce D-2-hydroxyglutarate (2-HG) and reduce inhibition by ICT. Mutant IDH1 can be found as a homodimer or a heterodimer. OBJECTIVE: We propose a novel strategy to inhibit IDH1 R132 variants as a means not to decrease the concentration of 2-HG but to provoke a cytotoxic effect, as the cell malignancy at this point no longer depends on 2-HG. We aim to inhibit the activity of the mutant heterodimer to block the wild-type subunit. Limiting the NADPH reserves in a cancerous cell will enhance its susceptibility to the oxidative stress provoked by chemotherapy. METHODS: We performed a virtual screening using all US FDA-approved drugs to replicate the loss of inhibition of mutant IDH1 by ICT. We characterized our results based on molecular interactions and correlated them with the described phenotypes. RESULTS: We replicated the loss of inhibition by ICT in mutant IDH1. We identified 20 drugs with the potential to inhibit the heterodimeric isoform. Six of them are used in cancer treatment. CONCLUSIONS: We present 20 FDA-approved drugs with the potential to inhibit IDH1 wild-type activity in mutated cells. We believe this work may provide important insights into current and new approaches to dealing with IDH1 mutations. In addition, it may be used as a basis for additional studies centered on drugs presenting differential sensitivities to different IDH1 isoforms.
Asunto(s)
Antineoplásicos/química , Dasatinib/química , Inhibidores Enzimáticos/química , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Pirimidinas/química , Sulfonamidas/química , Compuestos de Tosilo/química , Secuencia de Aminoácidos , Sitios de Unión , Dihidroergotamina/química , Epirrubicina/química , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Indazoles , Indoles , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Fenilcarbamatos , Pivampicilina/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Termodinámica , Interfaz Usuario-ComputadorRESUMEN
An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA.
Asunto(s)
Dendrímeros/química , Lípidos/química , ARN Interferente Pequeño/metabolismo , Dendrímeros/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , TransfecciónRESUMEN
Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers.
Asunto(s)
Biomimética , Dendrímeros/química , Técnicas de Transferencia de Gen , Nanopartículas , Supervivencia Celular , Simulación de Dinámica MolecularRESUMEN
ß-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with ß-D-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-L-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-L-arabinofuranoside (pNPAra) and p-nitrophenyl-ß-D-xylopyranoside (pNPXyl) with a KM of 0.65 and 12 mM, respectively. The other, ß-D-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55 mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3-pNPXyl, ABF3-pNPAra and XYL1-pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1-pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki = 2.5 mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.
Asunto(s)
Penicillium/enzimología , Xilosidasas/química , Xilosidasas/metabolismo , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Penicillium/genética , Penicillium/metabolismo , Conformación Proteica , Análisis de Secuencia , Homología de Secuencia , Especificidad por Sustrato , Xilosidasas/biosíntesis , Xilosidasas/genéticaRESUMEN
Polyamidoamine (PAMAM) dendrimers and water-soluble 3-mercaptopropionic acid (MPA)-capped CdSe quantum dots (QDs) were combined to produce a new gel containing supramolecular complexes of QDs/PAMAM dendrimers. The formation of the QDs/PAMAM supramolecular complexes was confirmed by high resolution electron microscopy and Fourier transform infrared (FTIR) analyses. Molecular dynamics simulations corroborated the structure of the new QDs/PAMAM-based supramolecular compound. Finally, on the basis of the prominent fluorescent properties of the supramolecular complexes, PAMAM dendrimer was functionalized with folic acid to produce a new QDs/PAMAM-folate derivative that showed an efficient and selective performance as a marker for gastric cancer cells.