Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Math Biol ; 88(4): 46, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519724

RESUMEN

Emerging and re-emerging pathogens are latent threats in our society with the risk of killing millions of people worldwide, without forgetting the severe economic and educational backlogs. From COVID-19, we learned that self isolation and quarantine restrictions (confinement) were the main way of protection till availability of vaccines. However, abrupt lifting of social confinement would result in new waves of new infection cases and high death tolls. Here, inspired by how an extracellular solution can make water move into or out of a cell through osmosis, we define confinement tonicity. This can serve as a standalone measurement for the net direction and magnitude of flows between the confined and deconfined susceptible compartments. Numerical results offer insights on the effects of easing quarantine restrictions.


Asunto(s)
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Epidemias/prevención & control , Cuarentena
2.
Annu Rev Control ; 52: 587-601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093069

RESUMEN

Mathematical models describing SARS-CoV-2 dynamics and the corresponding immune responses in patients with COVID-19 can be critical to evaluate possible clinical outcomes of antiviral treatments. In this work, based on the concept of virus spreadability in the host, antiviral effectiveness thresholds are determined to establish whether or not a treatment will be able to clear the infection. In addition, the virus dynamic in the host - including the time-to-peak and the final monotonically decreasing behavior - is characterized as a function of the time to treatment initiation. Simulation results, based on nine patient data, show the potential clinical benefits of a treatment classification according to patient critical parameters. This study is aimed at paving the way for the different antivirals being developed to tackle SARS-CoV-2.

3.
Annu Rev Control ; 50: 457-468, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041634

RESUMEN

While many epidemiological models were proposed to understand and handle COVID-19 pandemic, too little has been invested to understand human viral replication and the potential use of novel antivirals to tackle the infection. In this work, using a control theoretical approach, validated mathematical models of SARS-CoV-2 in humans are characterized. A complete analysis of the main dynamic characteristic is developed based on the reproduction number. The equilibrium regions of the system are fully characterized, and the stability of such regions is formally established. Mathematical analysis highlights critical conditions to decrease monotonically SARS-CoV-2 in the host, as such conditions are relevant to tailor future antiviral treatments. Simulation results show the aforementioned system characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA