RESUMEN
BACKGROUND: Biomarkers for colorectal cancer (CRC) can complement population screening methods, but so far, few plasma proteins have been identified as biomarkers for CRC. This study aims to identify potential protein biomarkers and therapeutic targets for CRC within the proteome range. METHODS: We extracted summary-level data of circulating protein from 7 published genome-wide association studies (GWASs) of plasma proteome for Mendelian randomization (MR), summary-data-based MR (SMR), and co-localization analyses to screen and validate proteins with causal effects in CRC. In addition, we further conducted druggability evaluation, prognosis analysis at the transcriptional level, and enrichment expression at the single-cell level, highlighting the important role of these plasma protein biomarkers in CRC. RESULTS: We identified 117 plasma protein biomarkers associated with CRC risk, with 9 proteins showing stronger genetic correlations in Bayesian co-localization (PP.H4 > 0.70). Further, we found 26 protein-coding genes already used in targeted drug development and may potentially become therapeutic targets for CRC. In prognosis analysis, the encoding genes of plasma proteins exhibited consistent effects with MR analysis and can serve as prognostic biomarkers for CRC. Additionally, we also found that the differentially expressed proteins are mainly expressed in fibroblasts, endothelial cells, macrophages, and T cells. CONCLUSION: Our study has identified plasma protein biomarkers associated with CRC risk, which may complement population screening methods for CRC and achieve more precise treatment for patients.