Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 369: 128383, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427767

RESUMEN

The main downside of utilizing algal biomass for biofuel production is the rigid cell wall which confines the availability of soluble organics to hydrolytic microbes during biofuel conversion. This constraint reduces the biofuel production efficiency of algal biomass. On the other hand, presenting various pretreatment methods before biofuel production affords cell wall disintegration and enhancement in biofuel generation. The potential of pretreatment methods chiefly relies on the extent of biomass liquefaction, energy, and cost demand. In this review, different pretreatments employed to disintegrate algal biomass were conferred in depth with detailed information on their efficiency in enhancing liquefaction and biofuel yield for pilot-scale implementation. Based on this review, it has been concluded that combinative and phase-separated pretreatments provide virtual input in enhancing the biofuel generation based on liquefaction potential, energy, and cost. Future studies should focus on decrement in cost and energy requirement of pretreatment in depth.


Asunto(s)
Biocombustibles , Plantas , Biomasa , Análisis Costo-Beneficio , Hidrólisis
2.
Mol Biotechnol ; 65(1): 1-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35939207

RESUMEN

The ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolates both from the clinical settings and food products are demonstrated to gain resistance to multiple antimicrobials. Therefore, the ESKAPE pathogens pose a serious threat to public health, which warrants specific attention to developing alternative novel therapeutics. The clustered regularly interspaced short palindromic repeats associated (CRISPR-Cas) system is one of the novel methods for managing antibiotic-resistant strains. Specific Cas nucleases can be programmed against bacterial genomic sequences to decrease bacterial resistance to antibiotics. Moreover, a few CRISPR-Cas nucleases have the ability to the sequence-specific killing of bacterial strains. However, some pathogens acquire antibiotic resistance due to the presence of the CRISPR-Cas system. In brief, there is a wide range of functional diversity of CRISPR-Cas systems in bacterial pathogens. Hence, to be an effective and safe infection treatment strategy, a comprehensive understanding of the role of CRISPR-Cas systems in modulating antibiotic resistance in ESKAPE pathogens is essential. The present review summarizes all the mechanisms by which CRISPR confers and prevents antibiotic resistance in ESKAPE. The review also emphasizes the relationship between CRISPR-Cas systems, biofilm formation, and antibiotic resistance in ESKAPE.


Asunto(s)
Bacterias , Infecciones Bacterianas , Humanos , Bacterias/genética , Klebsiella pneumoniae/genética , Genoma Bacteriano , Infecciones Bacterianas/genética , Farmacorresistencia Microbiana , Antibacterianos/farmacología
3.
Bioresour Technol ; 344(Pt B): 126245, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34743994

RESUMEN

The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.


Asunto(s)
Contaminantes Ambientales , Microalgas , Purificación del Agua , Biodegradación Ambiental , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA