RESUMEN
In recent years, there has been a growing number of studies on the impact of microplastics (MPs) on biota. However, its effects on birds' health are poorly understood. Thus, we aimed to evaluate the possible effects of ingestion of naturally-aged MPs by Coturnix Coturnix japonica (11 and 22 MP particles/day/bird, once a day, for 9 days), from different toxicity biomarkers. At the end of the experiment, it was found that the ingested MPs in birds showed a significant reduction in body biomass. Also, an increase in malondialdehyde production in the liver, brain, intestine, and gizzard of the birds, as well as a suppressive effect on hepatic nitric oxide production and superoxide dismutase activity in the liver and intestine were observed. Cerebral catalase activity was reduced in birds exposed to MPs and the cholinesterasic effect (marked by increased acetylcholinesterase activity) was observed in the muscle and brain of these animals. Despite these differences, through the main component analysis, hierarchical clustering analysis, and integrated biomarker response assessment, we observed similar toxicological effects in birds exposed to different amounts of MPs. In addition, the size of MPs was reduced, and their shape was altered as they transited through the gastrointestinal system, which probably explains their accumulation in the liver of birds. An expressive number of MPs are released through the feces of the birds throughout the experiment. As far as we know, this is the first report that associates MPs ingestion by small-sized terrestrial birds with biochemical alterations viz., predictive of oxidative stress, redox imbalance, and cholinesterasic effect, in addition to shedding light on the potential role of these birds as vectors for dispersal of MPs in natural environments.
Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Acetilcolinesterasa , Animales , Coturnix , Ingestión de Alimentos , Contaminantes Ambientales/análisis , Microplásticos/toxicidad , Plásticos/toxicidad , Poliestirenos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
The identification of SARS-CoV-2 particles in wastewater and freshwater ecosystems has raised concerns about its possible impacts on non-target aquatic organisms. In this particular, our knowledge of such impacts is still limited, and little attention has been given to this issue. Hence, in our study, we aimed to evaluate the possible induction of mutagenic (via micronucleus test) and genotoxic (via single cell gel electrophoresis assay, comet assay) effects in Poecilia reticulata adults exposed to fragments of the Spike protein of the new coronavirus at the level of 40 µg/L, denominated PSPD-2002. As a result, after 10 days of exposure, we have found that animals exposed to the peptides demonstrated an increase in the frequency of erythrocytic nuclear alteration (ENA) and all parameters assessed in the comet assay (length tail, %DNA in tail and Olive tail moment), suggesting that PSPD-2002 peptides were able to cause genomic instability and erythrocyte DNA damage. Besides, these effects were significantly correlated with the increase in lipid peroxidation processes [inferred by the high levels of malondialdehyde (MDA)] reported in the brain and liver of P. reticulata and with the reduction of the superoxide dismutase (SOD) and catalase (CAT) activity. Thus, our study constitutes a new insight and promising investigation into the toxicity associated with the dispersal of SARS-CoV-2 peptide fragments in freshwater environments.
Asunto(s)
COVID-19 , Poecilia , Contaminantes Químicos del Agua , Animales , Ensayo Cometa , Daño del ADN , Ecosistema , Inestabilidad Genómica , Humanos , Pandemias , Péptidos , SARS-CoV-2 , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
Steel wool (SW) has a broad-spectrum of applicability, particularly as abrasives, cleaning household utensils and surfaces in general. However, when present in the natural environment, they can be ingested by animals, such as birds, and may represent a risk to the survival of individuals. Accordingly, in this study, we attempted the hypothesis that the ingestion of SW microfibers (SWMs) by Gallus gallus domesticus chicks (model system used) alters growth/development, induces redox imbalance and cholinesterasic effect, as well as promotes iron overload in different organs. For this, the animals received SWMs twice (within a 24-h interval) in an amount corresponding to 12% of their total stomach volume. At the end of the experiment, we observed less weight gain and less head growth, increased production of hydrogen peroxide (in the brain, liver, crop, and gizzard), nitrite (liver, crop, proventriculus and gizzard), malondialdehyde (brain, liver, muscle, proventriculus, and gizzard), along with increased superoxide dismutase activity in the liver, muscle and crop of animals exposed to SWMs. Such results were associated with iron overload observed in different organs, especially in liver, crop, and gizzard. Furthermore, we evidenced an anti-cholinesterasic effect in birds that ingested the SWMs, marked by a reduction in the acetylcholinesterase activity (in brain). Thus, our study sheds light on the (eco)toxicological potential of SWMs in avifauna, conceding us to associate their ingestion (despite ephemeral and occasional) with damage to the health of individuals, requiring a greater attention spotted to disposal of these materials in ecosystems.
Asunto(s)
Sobrecarga de Hierro , Acetilcolinesterasa , Animales , Pollos/fisiología , Ecosistema , AceroRESUMEN
Despite plastic ingestion has already been reported in several bird species, its physiological impacts have been little inspected, especially in representatives of the Cathartidae family. Thus, in this study, we aimed to identify, characterize, and evaluate the effects arising from the ingestion of plastic materials by Coragyps atratus adults, that captured in landfill areas. Herein, a total of 51 individuals were captured, the frequency of plastic intake being higher than 40%. The plastic materials consisted mainly of low-density polyethylene and film-type polystyrene, as well as presenting irregular shapes and diameters between 10 and 30 mm. Biochemically, we observed in animals that contained plastics in the stomach ("plastic" group) high production of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and malondialdehyde (MDA) - especially in the intestine, muscle and brain - whose activity of catalase (CAT) and superoxide dismutase (SOD) was not sufficient to counteract the oxidative stress. Moreover, in the liver of these same animals, we observed high production of nitrite and nitrate, suggesting a hepatic nitrosative stress. Plus, we observed a cholinesterase effect in animals from the "plastic" group, marked by increased activity of butyrylcholinesterase (BChE) (in the brain) and muscle and cerebral acetylcholinesterase (AChE). On the other hand, the biochemical changes perceived were not significantly correlated with the identified plastic material concentrations (2.808 ± 0.598 items/g of stomach content and 0.276 ± 0.070 items/g of stomach - fresh weight), body condition of the animals, size, and shape of the identified plastic materials. Hence, our study sheds the light on the toxicity of plastics deposited in landfills and their ingestion by C. atratus, which reinforces the hypothesis that these materials are harming the health of these birds and, consequently, the dynamics of their populations.