Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 955049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119112

RESUMEN

Schistosomiasis represents a condition in which every aspect of the disease, starting from skin invasion of the cercariae to egg laying by adult worms, incites a tissue response from the vertebrate host. This response, whether acute or chronic, leads to the appearance of reporter molecules of tissue injury in bodily fluids that could be surveyed as markers for disease diagnosis, status and prognosis. In this scenario, the serum proteome associated with a schistosome infection remains poorly explored; particularly by the use of high-throughput mass spectrometric instrumentation. In this study, we aimed to comparatively examine the serum proteome of control versus infected BALB/c mice, spanning the interval between the onset of egg laying and the peak of the acute phase of infection. Compositional analysis of the sera, using one dimensional reversed-phase fractionation of tryptic peptides coupled to mass spectrometry, allowed identification of 453 constituents. Among these, over 30% (143 molecules) were differentially present comparing sera from infected and non-infected mice, as revealed by quantitative label-free shotgun approach. The majority of proteins exhibiting altered levels was categorised as belonging to immune response (acute phase-related proteins) followed by those linked to lipid transport and metabolism. Inspection of the lipid profile from control and infected individuals demonstrated more pronounced and significant alterations in triglycerides, VLDL and HDL fractions (p<0,001), attesting for a disturbance in circulating lipid molecules, and suggesting a key role in host-parasite interactions. Our findings provide a global view of the serum proteome in the context of experimental schistosomiasis during the acute phase of infection. It contributes by listing key molecules that could be monitored to inform on the associated inflammatory disease status. We hope it will shed light into uncovered aspects of the Schistosoma mansoni parasitism in the vertebrate host, particularly those related to modulation of the lipid metabolism mediating immune responses.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Interacciones Huésped-Parásitos , Metabolismo de los Lípidos , Lípidos , Ratones , Ratones Endogámicos BALB C , Proteoma/metabolismo , Schistosoma mansoni , Esquistosomiasis/parasitología , Triglicéridos
2.
Front Immunol ; 9: 3137, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30728824

RESUMEN

Schistosomiasis is a neglected parasitic disease that affects millions of people worldwide and is caused by helminth parasites from the genus Schistosoma. When caused by S. mansoni, it is associated with the development of a hepatosplenic disease caused by an intense immune response to the important antigenic contribution of adult worms and to the presence of eggs trapped in liver tissue. Although the importance of the spleen for the establishment of immune pathology is widely accepted, it has received little attention in terms of the molecular mechanisms operating in response to the infection. Here, we interrogated the spleen proteome using a label-free shotgun approach for the potential discovery of molecular mechanisms associated to the peak of the acute phase of inflammation and the development of splenomegaly in the murine model. Over fifteen hundred proteins were identified in both infected and control individuals and 325 of those proteins were differentially expressed. Two hundred and forty-two proteins were found upregulated in infected individuals while 83 were downregulated. Functional enrichment analyses for differentially expressed proteins showed that most of them were categorized within pathways of innate and adaptive immunity, DNA replication, vesicle transport and catabolic metabolism. There was an important contribution of granulocyte proteins and antigen processing and presentation pathways were augmented, with the increased expression of MHC class II molecules but the negative regulation of cysteine and serine proteases. Several proteins related to RNA processing were upregulated, including splicing factors. We also found indications of metabolic reprogramming in spleen cells with downregulation of proteins related to mitochondrial metabolism. Ex-vivo imunophenotyping of spleen cells allowed us to attribute the higher abundance of MHC II detected by mass spectrometry to increased number of macrophages (F4/80+/MHC II+ cells) in the infected condition. We believe these findings add novel insights for the understanding of the immune mechanisms associated with the establishment of schistosomiasis and the processes of immune modulation implied in the host-parasite interactions.


Asunto(s)
Proteoma , Proteómica , Schistosoma , Esquistosomiasis/diagnóstico , Esquistosomiasis/metabolismo , Esplenomegalia/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Femenino , Inmunofenotipificación , Espectrometría de Masas , Ratones , Proteómica/métodos , Esquistosomiasis/parasitología , Bazo/citología , Bazo/metabolismo , Esplenomegalia/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA