Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36016017

RESUMEN

With the fast and unstoppable development of technology, the amount of available technological devices and the data they produce is overwhelming. In analyzing the context of a smart home, a diverse group of intelligent devices generating constant reports of its environment information is needed for the proper control of the house. Due to this demand, many possible solutions have been developed in the literature to assess the need for processing power and storage capacity. This work proposes HOsT (home-context-aware fog-computing solution)-a solution that addresses the problems of data heterogeneity and the interoperability of smart objects in the context of a smart home. HOsT was modeled to compose a set of intelligent objects to form a computational infrastructure in fog. A publish/subscribe communication module was implemented to abstract the details of communication between objects to disseminate heterogeneous information. A performance evaluation was carried out to validate HOsT. The results show evidence of efficiency in the communication infrastructure; and in the impact of HOsT compared with a cloud infrastructure. Furthermore, HOsT provides scalability about the number of devices acting simultaneously and demonstrates its ability to work with different devices.


Asunto(s)
Ambiente
2.
Sensors (Basel) ; 14(1): 848-67, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24399157

RESUMEN

In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.


Asunto(s)
Suministros de Energía Eléctrica , Tecnología de Sensores Remotos , Tecnología Inalámbrica , Redes de Comunicación de Computadores , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA