Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400739, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152948

RESUMEN

In the present study, both short-range and long-range structural features of an ionic bridged silsesquioxane, specifically one containing the 1,4-diazoniabicyclo[2.2.2]octane chloride group (ISSQ), were elucidated. This ionic silsesquioxane was synthesized via direct polycondensation of a bridged organosilane precursor, without any additional functionalization step. Si-O-Si cage structures typical of Polyhedral Oligomeric Silsesquioxanes (POSS) were identified. The average interatomic distances of the POSS cages, including the open T8 cage and the T12 cage for the ISSQ, as well as the T8 cage for a commercially available pendant POSS were determined. It is the first report of the interatomic distance determination of POSS cage; achieved by using total pair distribution function G(r) values obtained through high-resolution synchrotron X-ray diffraction combined with density functional theory (DFT) calculations. The application of DFT was crucial for accurately assigning X-ray peaks and verifying structural details. Furthermore, the analysis of X-ray diffraction peaks and the examination of crystalline domains via transmission electron microscopy enabled the proposal of a hexagonal arrangement of Si-O-Si cages over long ranges within the ionic bridged silsesquioxane. This proposed arrangement highlights a distinctive structural organization that could impact the material's properties and applications.

2.
Phys Chem Chem Phys ; 26(16): 12799-12805, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619871

RESUMEN

Isothiazolinones represent a class of heterocyclic compounds widely used in various applications, including as biocides in cosmetics, detergents, and paints, as well as in industrial wastewater treatment. Indeed, the presence of isothiazolinones in the environment and their associated potential health hazards have raised significant concerns. In this study, a non-adiabatic dynamics investigation was conducted using state-of-the-art methodologies to explore the photochemistry of isothiazolinones. A simplified model, isothiazol-3(2H)-one (ISO), was employed to represent this compound class. The study validated the model and demonstrated that ISO can return to its ground state through the cleavage of the S-N or S-C bonds, with no significant energy barrier observed. Non-adiabatic dynamics simulations provided insights into the time scales and detailed processes of isothiazolinone photodissociation. The preferred route for deactivation was found to be the cleavage of the S-N bond. This research enhances our understanding of the photodeactivation processes of isothiazolinones and their potential environmental impact.

3.
Chembiochem ; 22(5): 865-875, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33084150

RESUMEN

The SARS-CoV-2 pandemic is the biggest health concern today, but until now there is no treatment. One possible drug target is the receptor binding domain (RBD) of the coronavirus' spike protein, which recognizes the human angiotensin-converting enzyme 2 (hACE2). Our in silico study discusses crucial structural and thermodynamic aspects of the interactions involving RBDs from the SARS-CoV and SARS-CoV-2 with the hACE2. Molecular docking and molecular dynamics simulations explain why the chemical affinity of the new SARS-CoV-2 for hACE2 is much higher than in the case of SARS-CoV, revealing an intricate pattern of hydrogen bonds and hydrophobic interactions and estimating a free energy of binding, which is consistently much more negative in the case of SARS-CoV-2. This work presents a chemical reason for the difficulty in treating the SARS-CoV-2 virus with drugs targeting its spike protein and helps to explain its infectiousness.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19 , SARS-CoV-2/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Phys Chem Chem Phys ; 21(8): 4408-4420, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30729973

RESUMEN

This study presents the synthesis, characterisation and theoretical calculations of compounds that contain electron donor and withdrawing groups connected through a π-conjugated benzazolic structure. The compounds in solution show an absorption maximum in the UV-visible spectrum (380-390 nm) due to spin and symmetry allowed electronic 1ππ* transitions with no clear evidence for charge transfer in either compound in the ground state. A fluorescence emission located in the violet-blue-green region, tailored by solvent polarity, with a large Stokes shift was observed. Taking the long-wavelength emission into account, the Lippert-Mataga plot indicates a positive solvatochromism in the solvent polarity function (Δf) range 0.02-0.20, related to the occurrence of an ICT mechanism in the excited state. At Δf greater than 0.20, the polarity of the medium seems no longer to increase the stabilization of the compounds, reaching a plateau. Time-dependent density functional theory (TD-DFT) and resolution-of-identity second-order approximate coupled-cluster (RI-CC2) calculations were also used to better understand the excited state of these compounds. The results indicated that ESIPT was disfavoured in the compounds, mainly in polar solvents, and the emission wavelengths were primarily associated with ICT. In summary, in these push-pull compounds, the electron donating and withdrawing groups do not favour the ESIPT process.

5.
Phys Chem Chem Phys ; 14(31): 10994-1001, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22782066

RESUMEN

Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA