Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(22): 6018-6026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804145

RESUMEN

Drosophila suzukii (Matsumura, 1931), the spotted-wing drosophila, is a highly invasive fruit fly that spread from Southern Asia across most regions of Asia and, in the last 15 years, has invaded Europe and the Americas. It is an economically important pest of small fruits such as berries and stone fruits. Drosophila suzukii speciated by adapting to cooler, mountainous, and forest environments. In temperate regions, it evolved seasonal polyphenism traits which enhanced its survival during stressful winter population bottlenecks. Consequently, in these temperate regions, the populations undergo seasonal reproductive dynamics. Despite its economic importance, no data are available on the behavioural reproductive strategies of this fly. The presence of polyandry, for example, has not been determined despite the important role it might play in the reproductive dynamics of populations. We explored the presence of polyandry in an established population in Trentino, a region in northern Italy. In this area, D. suzukii overcomes the winter bottleneck and undergoes a seasonal reproductive fluctuation. We observed a high remating frequency in females during the late spring demographic explosion that led to the abundant summer population. The presence of a high degree of polyandry and shared paternity associated with the post-winter population increase raises the question of the possible evolutionary adaptive role of this reproductive behaviour in D. suzukii.


Asunto(s)
Drosophila , Especies Introducidas , Femenino , Animales , Drosophila/genética , Reproducción , Asia , Europa (Continente)
2.
Front Genet ; 13: 931163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092930

RESUMEN

The tiger mosquito (Aedes albopictus) is one of the most invasive species in the world and a competent vector for numerous arboviruses, thus the study and monitoring of its fast worldwide spread is crucial for global public health. The small extra-nuclear and maternally-inherited mitochondrial DNA represents a key tool for reconstructing phylogenetic and phylogeographic relationships within a species, especially when analyzed at the mitogenome level. Here the mitogenome variation of 76 tiger mosquitoes, 37 of which new and collected from both wild adventive populations and laboratory strains, was investigated. This analysis significantly improved the global mtDNA phylogeny of Ae. albopictus, uncovering new branches and sub-branches within haplogroup A1, the one involved in its recent worldwide spread. Our phylogeographic approach shows that the current distribution of tiger mosquito mitogenome variation has been strongly affected by clonal and sub-clonal founder events, sometimes involving wide geographic areas, even across continents, thus shedding light on the Asian sources of worldwide adventive populations. In particular, different starting points for the two major clades within A1 are suggested, with A1a spreading mainly along temperate areas from Japanese and Chinese sources, and A1b arising and mainly diffusing in tropical areas from a South Asian source.

3.
Insects ; 13(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35323588

RESUMEN

The Asian tiger mosquito, Aedes albopictus, has become one of the most important invasive vectors for disease pathogens such as the viruses that cause chikungunya and dengue. Given the medical importance of this disease vector, a number of control programmes involving the use of the sterile insect technique (SIT) have been proposed. The identification of chemical compounds that attract males can be very useful for trapping purposes, especially for monitoring the makeup of the male population during control programmes, such as those involving the use of the SIT. Twenty-eight chemical compounds from different chemical classes were evaluated using a dual-port olfactometer assay. The compounds included known animal, fungal and plant host volatiles, and components of a putative Aedes aegypti pheromone. Many of the compounds were repellent for male mosquitoes, especially at the highest concentration. One compound, decanoic acid, acted as an attractant for males at an intermediate concentration. Decanoic acid did not elicit a significant response from female mosquitoes.

4.
BMC Biol ; 19(1): 211, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556101

RESUMEN

BACKGROUND: Glossina species (tsetse flies), the sole vectors of African trypanosomes, maintained along their long evolutionary history a unique reproductive strategy, adenotrophic viviparity. Viviparity reduces their reproductive rate and, as such, imposes strong selective pressures on males for reproductive success. These species live in sub-Saharan Africa, where the distributions of the main sub-genera Fusca, Morsitans, and Palpalis are restricted to forest, savannah, and riverine habitats, respectively. Here we aim at identifying the evolutionary patterns of the male reproductive genes of six species belonging to these three main sub-genera. We then interpreted the different patterns we found across the species in the light of viviparity and the specific habitat restrictions, which are known to shape reproductive behavior. RESULTS: We used a comparative genomic approach to build consensus evolutionary trees that portray the selective pressure acting on the male reproductive genes in these lineages. Such trees reflect the long and divergent demographic history that led to an allopatric distribution of the Fusca, Morsitans, and Palpalis species groups. A dataset of over 1700 male reproductive genes remained conserved over the long evolutionary time scale (estimated at 26.7 million years) across the genomes of the six species. We suggest that this conservation may result from strong functional selective pressure on the male imposed by viviparity. It is noteworthy that more than half of these conserved genes are novel sequences that are unique to the Glossina genus and are candidates for selection in the different lineages. CONCLUSIONS: Tsetse flies represent a model to interpret the evolution and differentiation of male reproductive biology under different, but complementary, perspectives. In the light of viviparity, we must take into account that these genes are constrained by a post-fertilization arena for genomic conflicts created by viviparity and absent in ovipositing species. This constraint implies a continuous antagonistic co-evolution between the parental genomes, thus accelerating inter-population post-zygotic isolation and, ultimately, favoring speciation. Ecological restrictions that affect reproductive behavior may further shape such antagonistic co-evolution.


Asunto(s)
Moscas Tse-Tse , Animales , Ecosistema , Genómica , Masculino , Reproducción/genética , Trypanosoma , Moscas Tse-Tse/genética
5.
BMC Genet ; 21(Suppl 2): 125, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339494

RESUMEN

BACKGROUND: The Oriental fruit fly, Bactrocera dorsalis, is a highly polyphagous invasive species with a high reproductive potential. In many tropical and subtropical parts of the world it ranks as one of the major pests of fruits and vegetables. Due to its economic importance, genetic, cytogenetic, genomic and biotechnological approaches have been applied to understand its biology and to implement the Sterile Insect Technique, currently a part of area-wide control programmes against this fly. Its chromosome complement includes five pairs of autosomes and the sex chromosomes. The X and Y sex chromosomes are heteromorphic and the highly heterochromatic and degenerate Y harbours the male factor BdMoY. The characterization of the Y chromosome in this fly apart from elucidating its role as primary sex determination system, it is also of crucial importance to understand its role in male biology. The repetitive nature of the Y chromosome makes it challenging to sequence and characterise. RESULTS: Using Representational Difference Analysis, fluorescent in situ hybridisation on mitotic chromosomes and in silico genome resources, we show that the B. dorsalis Y chromosome harbours transcribed sequences of gyf, (typo-gyf) a homologue of the Drosophila melanogaster Gigyf gene, and of a non-LTR retrotransposon R1. Similar sequences are also transcribed on the X chromosome. Paralogues of the Gigyf gene are also present on the Y and X chromosomes of the related species B. tryoni. Another identified Y-specific repetitive sequence linked to BdMoY appears to be specific to B. dorsalis. CONCLUSIONS: Our random scan of the Y chromosome provides a broad picture of its general composition and represents a starting point for further applicative and evolutionary studies. The identified repetitive sequences can provide a useful Y-marking system for molecular karyotyping of single embryos. Having a robust diagnostic marker associated with BdMoY will facilitate studies on how BdMoY regulates the male sex determination cascade during the embryonic sex-determination window. The Y chromosome, despite its high degeneracy and heterochromatic nature, harbours transcribed sequences of typo-gyf that may maintain their important function in post-transcriptional mRNA regulation. That transcribed paralogous copies of Gigyf are present also on the X and that this genomic distribution is maintained also in B. tryoni raises questions on the evolution of sex chromosomes in Bactrocera and other tephritids.


Asunto(s)
Marcadores Genéticos , Tephritidae/genética , Cromosoma Y/genética , Animales , Femenino , Genes de Insecto , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos , Caracteres Sexuales
6.
BMC Genomics ; 21(1): 547, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32767966

RESUMEN

BACKGROUND: The Asian tiger mosquito, Aedes albopictus, is a highly dangerous invasive vector of numerous medically important arboviruses including dengue, chikungunya and Zika. In four decades it has spread from tropical Southeast Asia to many parts of the world in both tropical and temperate climes. The rapid invasion process of this mosquito is supported by its high ecological and genetic plasticity across different life history traits. Our aim was to investigate whether wild populations, both native and adventive, also display transcriptional genetic variability for functions that may impact their biology, behaviour and ability to transmit arboviruses, such as sensory perception. RESULTS: Antennal transcriptome data were derived from mosquitoes from a native population from Ban Rai, Thailand and from three adventive Mediterranean populations: Athens, Greece and Arco and Trento from Italy. Clear inter-population differential transcriptional activity was observed in different gene categories related to sound perception, olfaction and viral infection. The greatest differences were detected between the native Thai and the Mediterranean populations. The two Italian populations were the most similar. Nearly one million quality filtered SNP loci were identified. CONCLUSION: The ability to express this great inter-population transcriptional variability highlights, at the functional level, the remarkable genetic flexibility of this mosquito species. We can hypothesize that the differential expression of genes, including those involved in sensory perception, in different populations may enable Ae. albopictus to exploit different environments and hosts, thus contributing to its status as a global vector of arboviruses of public health importance. The large number of SNP loci present in these transcripts represents a useful addition to the arsenal of high-resolution molecular markers and a resource that can be used to detect selective pressure and adaptive changes that may have occurred during the colonization process.


Asunto(s)
Aedes , Arbovirus , Infección por el Virus Zika , Virus Zika , Aedes/genética , Animales , Italia , Mosquitos Vectores/genética , Tailandia
7.
Commun Biol ; 3(1): 326, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581265

RESUMEN

The mosquito Aedes albopictus is one of the most dangerous invasive species. Its worldwide spread has created health concerns as it is a major vector of arboviruses of public health significance such as chikungunya (CHIKV). Dynamics of different genetic backgrounds and admixture events may have impacted competence for CHIKV in adventive populations. Using microsatellites, we infer the genetic structure of populations across the expansion areas that we then associate with their competence for different CHIKV genotypes. Here we show that the demographic history of Ae. albopictus populations is a consequence of rapid complex patterns of historical lineage diversification and divergence that influenced their competence for CHIKV. The history of adventive populations is associated with CHIKV genotypes in a genotype-by-genotype interaction that impacts their vector competence. Thus, knowledge of the demographic history and vector competence of invasive mosquitoes is pivotal for assessing the risk of arbovirus outbreaks in newly colonized areas.


Asunto(s)
Aedes/genética , Aedes/virología , Virus Chikungunya , Genética de Población , Animales , Asia Sudoriental , Fiebre Chikungunya/transmisión , Femenino , Variación Genética , Interacciones Huésped-Patógeno , Especies Introducidas , Repeticiones de Microsatélite , Mosquitos Vectores , América del Norte , América del Sur
8.
Parasit Vectors ; 11(Suppl 2): 647, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30583734

RESUMEN

BACKGROUND: Global concern over the rapid expansion of the Asian tiger mosquito, Aedes albopictus, and its vector competence has highlighted an urgent need to improve currently available population control methods, like the Sterile Insect Technique. Knowledge of the sex determination cascade is a prerequisite for the development of early-stage sexing systems. To this end, we have characterised the putative sex determination gene, Nix, in this species. In Aedes species the chromosome complement consists of three pairs of chromosomes. The sex determination alleles are linked to the smallest homomorphic chromosome. RESULTS: We identified the male-specific chromosome 1 of Ae. albopictus that carries the putative male-determining gene Nix. We have also characterised the complete genomic sequence of the Nix gene which is composed of two exons and a short intron. The gene displays different levels of intron retention during development. Comparison of DNA sequences covering most of the Nix gene from individuals across the species range revealed no polymorphism. CONCLUSIONS: Our characterisation of the Nix gene in Ae. albopictus represents an initial step in the analysis of the sex determination cascade in this species. We found evidence of intron retention (IR) in Nix. IR might play a role in regulating the expression of Nix during development. Our results provide the basis for the development of new genetic control strategies.


Asunto(s)
Aedes/genética , Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Mosquitos Vectores/genética , Procesos de Determinación del Sexo , Aedes/fisiología , Alelos , Animales , Exones/genética , Femenino , Sitios Genéticos , Intrones/genética , Masculino , Mosquitos Vectores/fisiología , Cromosomas Sexuales/genética
10.
PLoS Negl Trop Dis ; 11(1): e0005332, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28135274

RESUMEN

BACKGROUND: Invasive species represent a global concern for their rapid spread and the possibility of infectious disease transmission. This is the case of the global invader Aedes albopictus, the Asian tiger mosquito. This species is a vector of medically important arboviruses, notably chikungunya (CHIKV), dengue (DENV) and Zika (ZIKV). The reconstruction of the complex colonization pattern of this mosquito has great potential for mitigating its spread and, consequently, disease risks. METHODOLOGY/PRINCIPAL FINDINGS: Classical population genetics analyses and Approximate Bayesian Computation (ABC) approaches were combined to disentangle the demographic history of Aedes albopictus populations from representative countries in the Southeast Asian native range and in the recent and more recently colonized areas. In Southeast Asia, the low differentiation and the high co-ancestry values identified among China, Thailand and Japan indicate that, in the native range, these populations maintain high genetic connectivity, revealing their ancestral common origin. China appears to be the oldest population. Outside Southeast Asia, the invasion process in La Réunion, America and the Mediterranean Basin is primarily supported by a chaotic propagule distribution, which cooperates in maintaining a relatively high genetic diversity within the adventive populations. CONCLUSIONS/SIGNIFICANCE: From our data, it appears that independent and also trans-continental introductions of Ae. albopictus may have facilitated the rapid establishment of adventive populations through admixture of unrelated genomes. As a consequence, a great amount of intra-population variability has been detected, and it is likely that this variability may extend to the genetic mechanisms controlling vector competence. Thus, in the context of the invasion process of this mosquito, it is possible that both population ancestry and admixture contribute to create the conditions for the efficient transmission of arboviruses and for outbreak establishment.


Asunto(s)
Aedes/genética , Aedes/virología , Arbovirus/clasificación , Genética de Población , Mosquitos Vectores/genética , Animales , Asia Sudoriental , Teorema de Bayes , Demografía , Brotes de Enfermedades , Europa (Continente) , Variación Genética , Genotipo , Repeticiones de Microsatélite , Mosquitos Vectores/virología , Vigilancia de la Población , Saliva/virología , Estados Unidos
11.
Front Genet ; 7: 208, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933090

RESUMEN

In the last 40 years, the Asian tiger mosquito Aedes albopictus, indigenous to East Asia, has colonized every continent except Antarctica. Its spread is a major public health concern, given that this species is a competent vector for numerous arboviruses, including those causing dengue, chikungunya, West Nile, and the recently emerged Zika fever. To acquire more information on the ancestral source(s) of adventive populations and the overall diffusion process from its native range, we analyzed the mitogenome variation of 27 individuals from representative populations of Asia, the Americas, and Europe. Phylogenetic analyses revealed five haplogroups in Asia, but population surveys appear to indicate that only three of these (A1a1, A1a2, and A1b) were involved in the recent worldwide spread. We also found out that a derived lineage (A1a1a1) within A1a1, which is now common in Italy, most likely arose in North America from an ancestral Japanese source. These different genetic sources now coexist in many of the recently colonized areas, thus probably creating novel genomic combinations which might be one of the causes of the apparently growing ability of A. albopictus to expand its geographical range.

12.
Insect Biochem Mol Biol ; 79: 13-26, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27720923

RESUMEN

In the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)(Diptera: Tephritidae), mating has a strong impact on female biology, leading to a decrease in sexual receptivity and increased oviposition and fecundity. Previous studies suggest that sperm transfer may play a role in inducing these behavioural changes. Here we report the identification of a medfly innexin gene, Cc-inx5, whose expression is limited to the germ-line of both sexes. Through RNA interference of this gene, we generated males without testes and, consequently, sperm, but apparently retaining all the other reproductive organs intact. These sperm-less males were able to mate and, like their wild-type counterparts, to induce in their partners increased oviposition rates and refractoriness to remating. Interestingly, matings to sperm-less males results in oviposition rates higher than those induced by copulation with control males. In addition, the observed female post-mating behavioural changes were congruent with changes in transcript abundance of genes known to be regulated by mating in this species. Our results suggest that sperm transfer is not necessary to reduce female sexual receptivity and to increase oviposition and fecundity. These data pave the way to a better understanding of the role/s of seminal components in modulating female post-mating responses. In the long term, this knowledge will be the basis for the development of novel approaches for the manipulation of female fertility, and, consequently, innovative tools to be applied to medfly control strategies in the field.


Asunto(s)
Ceratitis capitata/fisiología , Proteínas de Insectos/genética , Interferencia de ARN , Conducta Sexual Animal , Animales , Ceratitis capitata/genética , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Filogenia , Análisis de Secuencia de Proteína , Espermatozoides/citología
13.
Genome Biol ; 17(1): 192, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27659211

RESUMEN

BACKGROUND: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. RESULTS: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. CONCLUSIONS: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.


Asunto(s)
Evolución Biológica , Ceratitis capitata/genética , Genoma de los Insectos , Anotación de Secuencia Molecular , Animales , Animales Modificados Genéticamente/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Especies Introducidas , Control Biológico de Vectores
14.
Pathog Glob Health ; 109(5): 207-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26369436

RESUMEN

The draft genome sequence of Italian specimens of the Asian tiger mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae) was determined using a standard NGS (next generation sequencing) approach. The size of the assembled genome is comparable to that of Aedes aegypti; the two mosquitoes are also similar as far as the high content of repetitive DNA is concerned, most of which is made up of transposable elements. Although, based on BUSCO (Benchmarking Universal Single-Copy Orthologues) analysis, the genome assembly reported here contains more than 99% of protein-coding genes, several of those are expected to be represented in the assembly in a fragmented state. We also present here the annotation of several families of genes (tRNA genes, miRNA genes, the sialome, genes involved in chromatin condensation, sex determination genes, odorant binding proteins and odorant receptors). These analyses confirm that the assembly can be used for the study of the biology of this invasive vector of disease.


Asunto(s)
Aedes/genética , Genoma de los Insectos , Análisis de Secuencia de ADN , Animales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Italia , Masculino , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta
15.
Parasit Vectors ; 8: 188, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25890257

RESUMEN

BACKGROUND: The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. METHODS: Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. RESULTS: Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F ST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. CONCLUSIONS: The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities. Under this scenario, multiple introductions and admixture events probably play an important role in maintaining the genetic diversity and in avoiding bottleneck effects. The polymorphic SSR markers here implemented will provide an important tool for reconstructing the routes of invasion followed by this mosquito.


Asunto(s)
Aedes/genética , Variación Genética , Distribución Animal , Animales , Clonación Molecular , ADN Espaciador Ribosómico/genética , Marcadores Genéticos , Italia , Reunión , Tailandia
16.
Zookeys ; (540): 157-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26798258

RESUMEN

We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area.

17.
BMC Genet ; 15 Suppl 2: S10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25470981

RESUMEN

BACKGROUND: In the Mediterranean fruit fly (medfly), Ceratitis capitata, a highly invasive agricultural pest species, polyandry, associated with sperm precedence, is a recurrent behaviour in the wild. The absence of tools for the unambiguous discrimination between competing sperm from different males in the complex female reproductive tract has strongly limited the understanding of mechanisms controlling sperm dynamics and use. RESULTS: Here we use transgenic medfly lines expressing green or red fluorescent proteins in the spermatozoa, which can be easily observed and unambiguously differentiated within the female fertilization chamber. In twice-mated females, one day after the second mating, sperm from the first male appeared to be homogenously distributed all over the distal portion of each alveolus within the fertilization chamber, whereas sperm from the second male were clearly concentrated in the central portion of each alveolus. This distinct stratified sperm distribution was not maintained over time, as green and red sperm appeared homogeneously mixed seven days after the second mating. This dynamic sperm storage pattern is mirrored by the paternal contribution in the progeny of twice-mated females. CONCLUSIONS: Polyandrous medfly females, unlike Drosophila, conserve sperm from two different mates to fertilize their eggs. From an evolutionary point of view, the storage of sperm in a stratified pattern by medfly females may initially favour the fresher ejaculate from the second male. However, as the second male's sperm gradually becomes depleted, the sperm from the first male becomes increasingly available for fertilization. The accumulation of sperm from different males will increase the overall genetic variability of the offspring and will ultimately affect the effective population size. From an applicative point of view, the dynamics of sperm storage and their temporal use by a polyandrous female may have an impact on the Sterile Insect Technique (SIT). Indeed, even if the female's last mate is sterile, an increasing proportion of sperm from a previous mating with a fertile male may contribute to sire viable progeny.


Asunto(s)
Ceratitis capitata/genética , Conducta Sexual Animal , Espermatozoides , Animales , Animales Modificados Genéticamente , Femenino , Fertilización , Masculino , Reproducción
18.
BMC Genet ; 15 Suppl 2: S11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25471105

RESUMEN

The highly invasive agricultural insect pest Ceratitis capitata (Diptera: Tephritidae) is the most thoroughly studied tephritid fruit fly at the genetic and molecular levels. It has become a model for the analysis of fruit fly invasions and for the development of area-wide integrated pest management (AW-IPM) programmes based on the environmentally-friendly Sterile Insect Technique (SIT). Extensive transcriptome resources and the recently released genome sequence are making it possible to unravel several aspects of the medfly reproductive biology and behaviour, opening new opportunities for comparative genomics and barcoding for species identification. New genes, promotors and regulatory sequences are becoming available for the development/improvement of highly competitive sexing strains, for the monitoring of sterile males released in the field and for determining the mating status of wild females. The tools developed in this species have been transferred to other tephritids that are also the subject of SIT programmes.


Asunto(s)
Ceratitis capitata/genética , Genómica , Control Biológico de Vectores , Animales , Animales Modificados Genéticamente , Ceratitis capitata/embriología , Ceratitis capitata/metabolismo , Desarrollo Embrionario/genética , Femenino , Genómica/métodos , Masculino , Reproducción , Conducta Sexual Animal , Maduración Sexual/genética
19.
BMC Genet ; 15 Suppl 2: S13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25471285

RESUMEN

BACKGROUND: Anastrepha fraterculus Wiedemann is a horticultural pest which causes significant economic losses in the fruit-producing areas of the American continent and limits the access of products to international markets. The use of environmentally friendly control strategies against this pest is constrained due to the limited knowledge of its population structure. RESULTS: We developed microsatellite markers for A. fraterculus from four genomic libraries, which were enriched in CA, CAA, GA and CAT microsatellite motifs. Fifty microsatellite regions were evaluated and 14 loci were selected for population genetics studies. Genotypes of 122 individuals sampled from four A. fraterculus populations were analyzed. The level of polymorphism ranged from three to 13 alleles per locus and the mean expected heterozygosity ranged from 0.60 to 0.64. Comparison between allelic and genotypic frequencies showed significant differences among all pairs of populations. CONCLUSIONS: This novel set of microsatellite markers provides valuable information for the description of genetic variability and population structure of wild populations and laboratory strains of A. fraterculus. This information will be used to identify and characterize candidate strains suitable to implement effective pest control strategies and might represent a first step towards having a more comprehensive knowledge about the genetics of this pest.


Asunto(s)
Repeticiones de Microsatélite , Tephritidae/genética , Animales , Femenino , Genética de Población , Infertilidad/genética , Masculino , Control Biológico de Vectores
20.
PLoS Negl Trop Dis ; 8(4): e2728, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24763283

RESUMEN

Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis.


Asunto(s)
Genoma Bacteriano , Genoma de los Insectos , Mutagénesis Insercional , Recombinación Genética , Moscas Tse-Tse/genética , Wolbachia/genética , Animales , Southern Blotting , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA